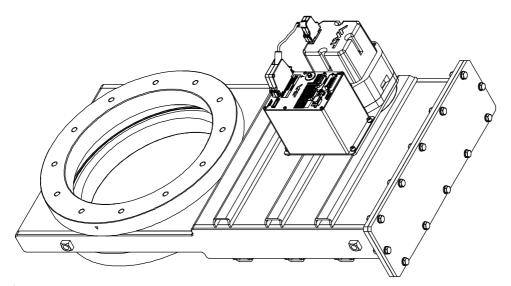
Installation, Operating & Maintenance Instructions

Control gate valve with CC-Link interface

Series 642 DN 63-400 mm (I.D. 2.5" - 16")

This manual is valid for the valve ordering number(s):


642 . . - . .GL - (1 sensor input) 642 . . - . .GN - (2 sensor inputs)

642.....AL -.... (1 sensor input / ±15V SPS) **642 AN - . . .** (2 sensor inputs / ±15V SPS) 642 HL - (1 sensor input / PFO) 642 CL - (2 sensor input / PFO) 642 CL - (2 sensor input / PFO) 642 CL - (2 sensor input / PFO) 642 CN - (2 sensor input / ±15V SPS / PFO) 642 CN - (2 sensor input / ±15V SPS / PFO)

(2 sensor inputs / ±15V SPS / PFO) 642 . . - . . CN -

SPS = Sensor Power Supply PFO = Power Failure Option

configured with firmware 600P.1G.00.08

Sample picture

Imprint

Manufacturer VAT Vakuumventile AG, CH-9469 Haag, Switzerland

Website: www.vatvalve.com
Phone: +41 81 771 61 61
Fax: +41 81 771 48 30
Email: CH@vatvalve.com

Publisher VAT Vakuumventile AG, CH-9469 Haag, Switzerland

Editor VAT Vakuumventile AG, CH-9469 Haag, Switzerland

Print VAT Vakuumventile AG, CH-9469 Haag, Switzerland

Copyright © VAT Vakuumventile AG 2017

No part of these instructions may be reproduced in any way (photocopies, microfilms or any other reproduction processes) nor may it be manipulated with electronic systems, duplicated or distributed without written permission from VAT. Offenders are liable to pay damages.

The original VAT firmware and updated state of the art versions of the VAT firmware are intended for use with VAT products. The VAT firmware contains a limited, time unlimited user license. The VAT firmware may not be used for purposes other than those intended nor is it permitted to make copies of the VAT firmware. In particular, it is strictly forbidden to give copies of the VAT firmware to other people.

The use of trade names, brand names, trademarks, etc. in these Instructions does not entitle third parties to consider these names to be unprotected and to use them freely. This is in accordance with the meaning of the laws and acts covering brand names and trademarks.

Contents

1	Des	•	on of product	
	1.1		cation of product	
	1.2		product	
	1.3	Used a	bbreviations	6
	1.4	Related	d documents	6
	1.5		ant information	
	1.6	Technic	cal data	
		1.6.1	Control and actuating unit	
		1.6.2	Valve unit	8
2	Safe	ety		9
	2.1	Compu	Ilsory reading material	9
	2.2		r levels	
	2.3		nel qualifications	
	2.4	Safety	labels	10
3	Des	ign an	d Function	11
	3.1			
	3.2	•	on	
		3.2.1	Pressure control system overview and function	12
		3.2.2	Principle of a pressure control system	
4	Inst	allatio	n	14
	4.1		king	
	4.2		tion into the system	
		4.2.1	Installation space condition	
		4.2.2	Connection overview	
		4.2.3	Installation procedure	
	4.3		ning torque	
	1.0	4.3.1	Mounting with centering rings	
		4.3.2	Mounting with O-ring in grooves	
	4.4		ible forces	
	•••	4.4.1	Requirements to sensor connection	
	4.5	Flectric	cal connection	
	1.0	4.5.1	Ground connection	
		4.5.2	Sensor supply concepts	
		4.5.3	Power and sensor connection (+24 VDC sensors)	
		4.5.4	Power (+24 VDC) and sensor connection (±15 VDC sensors) with SPS	
		4.5.5	CC-Link interface connection	
		4.5.6	LOGIC I/O	
		4.5.7	Service port connection	
	4.6	Initial o	peration	
		4.6.1	Setup procedure	
		4.6.2	CC-Link configuration	
		4.6.3	LOGIC I/O configuration	
		4.6.4	Valve configuration	
		4.6.5	Sensor configuration	
		4.6.6	ZERO	
		4.6.7	LEARN (adaptive)	
		4.6.8	Pressure control configuration	
	4.7		of control performance	
	•••	4.7.1	Tuning of control performance with adaptive pressure controller	
		4.7.2	Tuning of control performance with fixed PI pressure controller	
		4.7.3	Tuning of control performance with soft pump pressure controller	
	4.8		k interface commands	

		4.8.1	CC-Link Handshaking	
		4.8.2	Location of the handshaking bits	
		4.8.3	Example of the handshaking by a PLC-program	
	4.9		cinterface (Process data – cyclic communication)	
		4.9.1	OUTPUT Buffer (Master PLC)	
		4.9.2	INPUT Buffer (Master PLC)	
		4.9.3	Communication and timing between Master (PLC) and Slave (VAT-Valve).	70
5	One	ration		71
5	5.1		operation	
	0.1	5.1.1	Local operation	
		5.1.2	Remote operation	73
	5.2	Close v	alve	
	5.3	Open va	alve	74
	5.4		n control	
	5.5		re control	
		5.5.1	Pressure control operation with 2 sensors	
	5.6		information	
		5.6.1 5.6.2	Power up Operation	
		5.6.3	Fatal error	
		5.6.4	CC-Link LEDs.	
		5.6.5	Safety mode	
		5.6.6	Service indication	
	5.7	Operati	on during power up	
	5.8	Behavio	or in case of power failure	80
	5.9	Operati	on under increased temperature	80
•	T	مام ملطب	a a tin a	04
6	6.1		nooting	
	6.1	Addition	nal CC-Link warning	83
7	Mai	ntenan	ce	84
•	7.1		nance intervals	
	7.2		nance procedures	
		7.2.1	Replacement of gate seals and valve cleaning	
		7.2.2	Replacement of Option board	
		7.2.3	Retrofit / replacement procedure	93
_	_			•
8	кер	airs		. 96
9	Dier	mounti	ng and Storage	97
9	9.1		nting	
	9.1)	
	•			
10	Pac	kaging	and Transport	. 99
	10.1		ing	
	10.2	Transpo	ort	.100
11	Dier	nosal		101
• • •	ופום	J03ai		101
12	Spa	re part	'S	102
	12.1		_]	
		12.1.1	Valve unit with seals and grease	.104
			Controller	
		12.1.3	Accessories	.105
12	۸ ۵۰۰	ondiv	,	100
13	Ahb	CHUIX.		י טע

1 Description of product

1.1 Identification of product

The fabrication number and order number are fixed on the product directly or by means of an identification plate.

1.2 Use of product

This product is a control gate valve with isolation functionality. It is intended to use for downstream pressure control applications.

Use product for clean and dry vacuum applications only. Other applications are only allowed with the written permission of VAT.

1.3 Used abbreviations

Abbreviation	Description
СРА	Control Performance Analyzer
PFO	Power Failure Option
SFS	Sensor Full Scale
SPS	Sensor Power Supply
ADC	Analog-to-digital converter

1.4 Related documents

- Product Data Sheet
- Dimensional Drawing
- IOMI Heating device (if valve with heater)

1.5 Important information

This symbol points to a very important statement that requires particular attention.

Example:

Refer to chapter: «Technical data» for detailed information.

1.6 Technical data

1.6.1 Control and actuating unit

	Description							
Input voltage 1)	+24 VDC (±10%) @ 0.5 V pk-pk max.	[connector: POWER]						
Power consumption	55 W (standard) with optional SPS + 36 W with optional PFO + 10 W	[connector: POWER]						
Interface	remote	[connector: CC-Link]						
	local (RS232)	[connector: SERVICE]						
LOGIC I/O ²⁾ (configurable)	1 digital input	Facility of the Modern Lands (MODE)						
	1 digital output	[connector: Logic I/O]						
Sensor power supply output 3)	+24 VDC / 1500 mA max.	[connector: SENSOR]						
Sensor input Signal input voltage / Input resistance ADC resolution Sampling time	0-10 VDC / Ri>100 kΩ (linear to pressure) 0.23 mV 10 ms	[connector: SENSOR]						
PFO ⁴⁾ battery pack Charging time Durability	2 minutes max. up to 10 years @ 25°C ambient refer to «Durability of power fail battery» for	details						
Ambient temperature	0 °C to +50 °C max. (<35 °C recommended)							
Ambient humidity	0 to 95% RH, non-condensing							
Pressure control accuracy	5 mV or 0.1% of setpoint, whichever is greater							

- 1) Internal overcurrent protection by a PTC device.
- 2) Refer to chapter: «LOGIC I/O» for details.
- 3) Refer to chapter «Sensor supply concepts» for details.
- ⁴⁾ PFO = Power Failure Option. Refer to «Behavior in case of power failure» for details.

1.6.2 Valve unit

				Desc	cription						
Pressure range at 20)°C (un	heated or	n delivery)								
• DN63200						1 x 10E-8 mbar to 2.0 bar (abs)					
• DN250400						1 × 10E-8	3 mbar to	1.2 bar (ab	os)		
Leak rate to outside	/ seat a	at 20°C (u	nheated o	n delivery)	1 × 10E-9 mbar Is ⁻¹					
Differential pressure	on the	gate									
 Valve closed 											
- DN63200						≤ 2.0 bar					
- DN250400						≤ 1.2 bar					
During closing /	openin	g				≤ 30 mba	ır				
Cycles until first serv	ice (un	heated ar	nd under d	lean cond	itions)						
 Pressure contro 	l					1'000'000)				
 Isolation cycles 						200'000					
Admissible operating	tempe	erature									
 Valve body 						≤ 150°C					
 Ambient 						≤ 50°C					
Mounting position (va	alve se	at to face	chamber	is recomm	ended)						
• DN63350						Any					
• DN400						horizonta	I only (opt	ional in ve	rtical posit	ion with	
						extended	closing ti	me, fewer	cycles)		
Process side materia	als	body / p	late			Stainless steel: 304 (1.4301)					
		other parts							0), 304 (1.4301), 7), 430 (1.4016)		
Seals		plate				FKM (e.g. Viton [®])					
		rotary fe	ed througl	h		FKM (e.g. Viton®)					
		bonnet				FKM (e.g. Viton®) (DN63200 vulcanized)			ed)		
0 " " ()(DN 63	DN 80	DN 100	DN 160	DN 200	DN 250	DN 320	DN 350	DN 400	
Operating time (s) fo	r:	21/2"	3"	4"	6"	8"	10"	12"	14"	16"	
Open / close		4	4	6	6	6	10	10	10	10	
Pressure control (thro	ottling)	3	3	3	5	5	9	9	9	9	
Min. controllable conductance (ls ⁻¹) [N ₂ molecular flow]		0.65	0.8	1	1.6	2	2.5	3.2	3.5	4	
Max. Conductance (I [N ₂ molecular flow]	s ⁻¹)	440	800	1700	5000	12000	22000	30000	40000	50000	
Mainht (access)	kg	14	14	17	28	34	62	112	120	155	
Weight (approx.)	lbs	31	31	37	62	75	136	246	264	340	
Valve position indica	Valve position indication				Visual (mechanical and on controller)						
Dimensions						al drawing vailable or		valve			

2 Safety

2.1 Compulsory reading material

Read this chapter prior to performing any work with or on the product. It contains important information that is significant for your own personal safety. This chapter must have been read and understood by all persons who perform any kind of work with or on the product during any stage of its serviceable life.

NOTICE

Lack of knowledge

Failing to read this manual may result in property damage.

Firstly, read manual.

These Installation, Operating & Maintenance Instructions are an integral part of a comprehensive documentation belonging to a complete technical system. They must be stored together with the other documentation and accessible for anybody who is authorized to work with the system at any time.

2.2 Danger levels

A DANGER

High risk

Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

A WARNING

Medium risk

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

A CAUTION

Low riskIndicates a hazardous situation which, if not avoided, may result in minor or moderate

NOTICE

Command

injury.

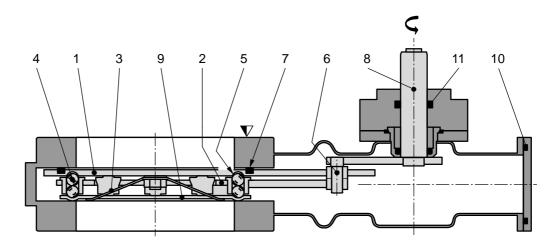
Indicates a hazardous situation which, if not avoided, may result in property damage.

2.3 Personnel qualifications

M WARNING

Unqualified personnel

Inappropriate handling may cause serious injury or property damage. Only qualified personnel are allowed to carry out the described work.


2.4 Safety labels

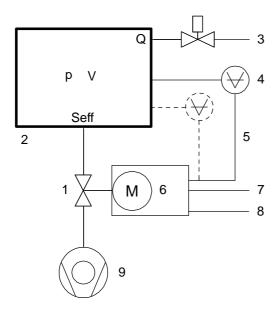
Label	Part No.	Location on valve
	T-9001-156	On protective foil covering of valve opening

3 Design and Function

3.1 Design

- 1 Valve gate
- 2 Ball guidance
- 3 Leaf spring
- 4 Ball pairs
- 5 Detents
- 6 Crank bolt

- 7 Gate seal
- 8 Actuator shaft
- 9 Counter plate
- 10 Bonnet seal
- 11 Rotary feed through seals


3.2 Function

The valve gate (1) acts as a throttling element and varies the conductance of the valve opening. Actuation is performed with a stepper motor and controller. The stepper motor/controller version ensures accurate pressure control due to exact gate positioning. For leak tight closing the VATLOCK principle is applied. For details refer to VAT catalog.

3.2.1 Pressure control system overview and function

Vacuum pressures are always absolute pressures unless explicitly specified as pressure differences.

Example: Downstream control

- 1 Valve
- 2 Process chamber
- 3 Gas inlet
- 4 Pressure sensor(s)
- 5 Sensor cable
- 6 Controller and actuator
- 7 Cable to remote control unit
- 8 Cable to power supply
- 9 HV Pump

 $S_{eff} Q / p$

S_{eff} effective pump speed (Is⁻¹)

Q Gas flow (mbar)

p Pressure (mbar)

or units used in USA

 $S_{eff} = 12.7 \cdot Q / p$

S_{eff} effective pump speed (Is⁻¹)

Q Gas flow (sccm)

p Pressure (mTorr)

3.2.1.1 Way of operation

The controller compares the actual pressure in the process chamber given by the pressure sensor with the preset pressure. The controller uses the difference between actual and set pressure to calculate the correct position of the control valve. The controller drives the control valve into the correct position and the actual pressure again equals the set pressure.

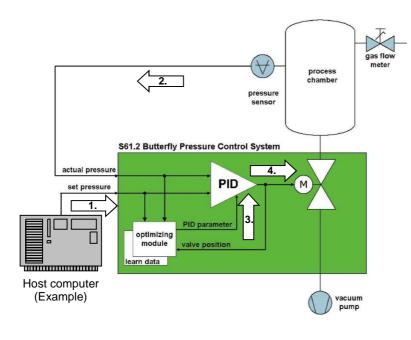
This control operation is performed continuously. Pressure changes in the process chamber due to leaks, desorption, and gas flow, reaction products, variations in pumping speed etc. are always corrected at once.

3.2.1.2 Pressure control

In a vacuum system which is pumped and into which gas is admitted at the same time, the pressure can be controlled in two ways:

1. Downstream control (standard):

The pressure is controlled by changing the conductance of a control valve between pump and process chamber. This changes the effective pumping speed at the process chamber. Pressure and gas flow can be independently controlled over a wide range.


2. Upstream control:

The pressure is controlled by changing the gas flow into the process chamber, while the pumping speed remains constant.

3.2.1.3 Adaptive controller (standard)

A controller adapting itself to changes in pressure, gas flow and pumping speed without any manual adjustments. This allows for a completely automatic operation of the system.

3.2.2 Principle of a pressure control system

- Host computer sends pressure set point
- Controller reads actual pressure from sensor
- 3. Optimizing module sends new PID parameters
- Actuator sets new valve position

4 Installation

WARNING

Unqualified personnel

Inappropriate handling may cause serious injury or property damage.

Only qualified personnel are allowed to carry out the described work.

4.1 Unpacking

NOTICE

Physical overstraining at controller

Inappropriate handling with the valve may cause in damage of controller.

Do not place the valve on the controller.

A CAUTION

Valve is a heavy component

Physical overstraining.

Use a crane to lift valves DN 200 (8") and larger.

- Make sure that the supplied products are in accordance with your order.
- Inspect the quality of the supplied products visually. If it does not meet your requirements, please contact VAT immediately.
- Store the original packaging material. It may be useful if products must be returned to VAT.
- 1. Open the transport case and remove inside packing material as far as necessary.
- Attach lifting device for valves DN 200 (8") and larger. For attachment refer to dimensional drawing of valve.
- 3. Lift the valve carefully and place it on a clean place.

Do not remove protective foils from valve opening

4.2 Installation into the system

A WARNING

Valve opening

Risk of serious injury.

Human body parts must be kept out of the valve opening and away from moving parts. Do not connect the controller to power before the valve is installed complete into the system.

NOTICE

Sealing surfaces

Sealing surfaces of valve and vacuum system could be damage in case of incorrect handling.

Only qualified personal are allowed to install the valve into the vacuum system.

NOTICE

Wrong connection

Wrong connection may result in damage of controller or power supply.

Connect all cables exactly as shown in the following descriptions and schematics.

NOTICE

Burned connector pins (spark)

Connector pins or electronic parts could damage, if plugged and unplugged under power.

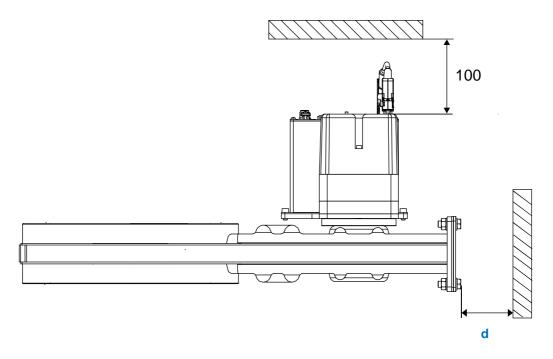
Do not plug or unplug connectors under power.

NOTICE

Contamination

Gate and other parts of the valve must be protected from contamination.

Always wear clean room gloves when handling the valve.

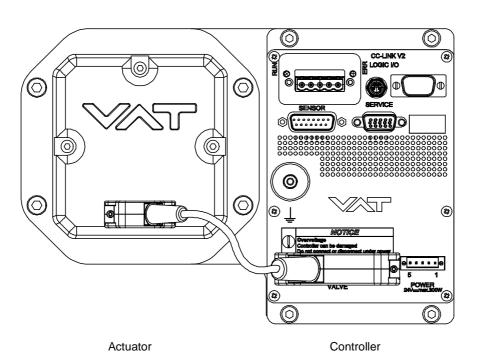

Mount valve to a clean system only.

4.2.1 Installation space condition

Install the valve with integrated controller with space for dismantling and air circulation as shown in figure below. (sample picture)



Overview table: DN to required distance (d) for maintenance.


DN	63	80 / 100	160	200	250	320 / 350	400
d	180	220	300	350	450	550	600

4.2.2 Connection overview

- 1 Valve
- 2 Process chamber
- 3 Gas inlet
- 4 Pressure sensor(s)
- 5 Sensor cable(s)
- 6 Cable to remote control unit
- 7 Cable to power supply
- 8 Controller
- 9 Connection cable controller / actuator
- 10 Actuator
- 11 Pump

4.2.3 Installation procedure

Install valve [1] into the vacuum system, with valve seat side to process chamber. The valve seat side
is indicated by the symbol "Δ" on the valve flange.

- Do not tighten the flange screws stronger than indicated under «Tightening torque».
- Do not admit higher forces to the valve than indicated under «Admissible forces».
- Make sure that enough space is kept free to do preventive maintenance work.
 The required space is indicated on the dimensional drawing.
- 2. Install the ground connection cable at controller. Refer to «Electrical connection»
- 3. Install connection cable between actuator (connector) and controller (connector: VALVE)
- 4. Install sensor(s) [4] according to the recommendations of the sensor manufacturer and directives given under «Requirements to sensor connection».
- Connect pressure sensor cable [5] to sensor(s) and then to valve (connector: SENSOR). Refer to chapter «Electrical connection» for correct wiring.
- 6. Connect valve to CC-Link [6] (CC-Link connector). Refer to «CC-Link interface connection» for correct wiring.
- Connect power supply [7] to valve (connector: POWER). Refer to chapter «Electrical connection» for correct wiring.

To provide power to the valve motor pins 2 and 3 must be bridged, otherwise motor interlock is active and the valve enters the safety mode and is not operative. Refer also to «Safety mode».

- 8. This valve may optionally be equipped with a heating device. Connect VAT heating device according to manual of respective heating device.
- 9. Perform «Setup procedure» to prepare valve for operation.

Without performing the setup procedure the valve will not be able to do pressure control.

4.3 Tightening torque

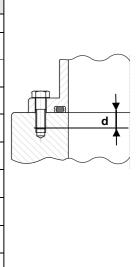
The torque values below are dependent on many factors, such as materials involved, surface quality, surface treatment, and lubrication.

The torques below are valid if immersion depth of the mounting screws is at least once the thread diameter (min. 1d), and the friction coefficient of the screw-flange connection ($\mu_{total} = (\mu_{screw\ thread-helicoil} + \mu_{under\ screw\ head})/2)$ is bigger than 0.12. Lower friction coefficients may damage the valve, as the resulting preload force gets too high. Therefore for other friction coefficients the torque needs to be adapted. Please review design guidelines for Helicoil-Screw connections and make sure that screws in use are capable to withstand applied torques, are appropriate for the application and are not too long. Too long screws may damage the valve, the immersion depth should not exceed (hole depth $-1\ mm$).

Tighten mounting screws of the flanges uniformly in crosswise order. Observe the maximum torque levels in the following tables.

4.3.1 Mounting with centering rings

D	N	m	ax. torqı (Nm)	ie	m	ax. torqı (lbs . ft)		Max.	hole dep (mm)	oth [d]	
mm	inch	ISO-F	JIS	ASA-LP	ISO-F	JIS	ASA-LP	ISO-F	JIS	ASA-LP	
63	2 1/2	8 – 10	8 – 10	8 – 10	6 – 8	6 – 8	6 – 8	13	13	15	JI.
80	3	8 – 10	8 – 10	8 – 10	6 – 8	6 – 8	6-8	13	13	15	
100	4	8 – 10	8 – 10	8 – 10	6 – 8	6 – 8	6 – 8	13	13	15	
160	6	13 – 15	13 – 15	20 - 30	9 - 11	9 - 11	15 – 22	14	14	15	
200	8	13 – 15	13 – 15	20 - 30	9 - 11	9 - 11	15 – 22	16	16	20	
250	10	17 – 20	17 – 20	40 – 60	13 – 15	13–15	30 – 44	16	16	20	
320	12	17 - 20	17 – 20	40 - 60	13 – 15	13–15	30 - 44	16	16	20	
350	12	17 - 20	17 – 20	40 - 60	13 – 15	13–15	30 - 44	16	16	20	
400	16	17 – 20	30 – 35	55 – 80	13 – 15	22 – 26	41 – 59	25	25	NA	



Refer to «Spare parts / Accessories» for centering rings ordering numbers.

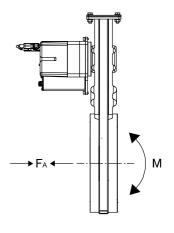
4.3.2 Mounting with O-ring in grooves

D	DN		max. torque t (Nm)		max. torque (lbs . ft)		Max.	hole dep (mm)	oth [d]		
mm	inch	ISO-F	JIS	ASA-LP	ISO-F	JIS	ASA-LP	ISO-F	JIS	ASA-LP	
63	4	N/A	N/A	N/A	N/A	N/A	N/A	13	13	15	
80	4	N/A	N/A	N/A	N/A	N/A	N/A	13	13	15	
100	4	N/A	N/A	N/A	N/A	N/A	N/A	13	13	15	اً
160	6	N/A	N/A	N/A	N/A	N/A	N/A	14	14	15	
200	8	N/A	N/A	N/A	N/A	N/A	N/A	16	16	20	
250	10	N/A	N/A	N/A	N/A	N/A	N/A	16	16	20	
320	12	N/A	N/A	N/A	N/A	N/A	N/A	16	16	20	
350	12	NA	N/A	N/A	N/A	N/A	N/A	16	16	20	
400	16	NA	N/A	N/A	N/A	N/A	N/A	25	25	N/A	

4.4 Admissible forces

NOTICE

Force at flange and valve body

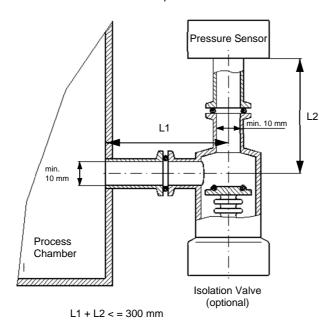

Forces from evacuating the system, from the weight of other components, and from baking can lead to deformation and malfunctioning of the valve.

Do not higher force the valve body as specified.

The following forces are admissible.

DN (no	om. I.D.)		nction or force «F _A »	Bending m	oment «M»
mm	inch	N	lbf	Nm	lbf ⋅ ft
63	2½	1960	440	78	58
80	3	1960	440	78	58
100	4	2450	560	98	72
160	6	2940	660	147	108
200	8	2940	660	147	108
250	10	3430	770	196	145
320	12	3920	880	294	217
350	14	3920	880	294	217
400	16	7840	1760	980	722

In case of both kind of forces are occurring («FA» und «M»), the above shown values are invalid. Please contact VAT in this case.



4.4.1 Requirements to sensor connection

To achieve fast and accurate pressure control a fast sensor response is required. Sensor response time: < 50ms. The sensor is normally connected to the chamber by a pipe. To maintain that the response time is not degraded by this connection it needs to meet the following requirements:

- Inner diameter of connection pipe: > = 10 mm
- Length of connection pipe: <= 300 mm

These conductance guidelines must include all valves and limiting orifices that may also be present. Make also sure that there is no obstruction in front of sensor connection port inside the chamber. The sensor should also be mounted free of mechanical shock and vibration. Dynamic stray magnetic fields may introduce noise to sensor output and should be avoided or shielded.

4.5 Electrical connection

NOTICE

Wrong connection

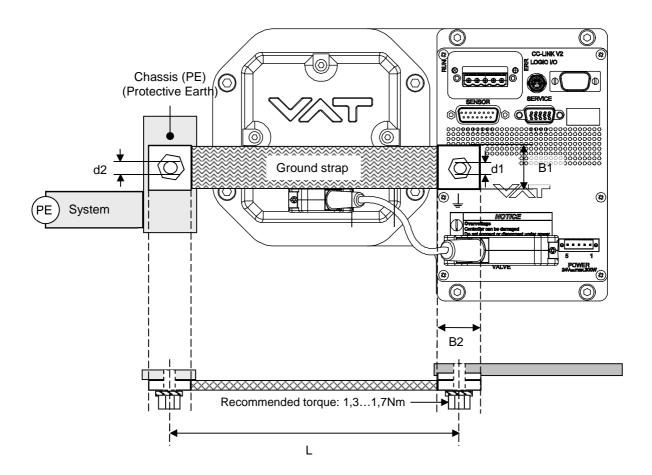
Wrong connection may result in damage of controller or power supply.

Connect all cables exactly as shown in the following descriptions and schematics.

NOTICE

Burned connector pins (spark)

Connector pins or electronic parts could damage, if plugged and unplugged under power.


Do not plug or unplug connectors under power.

4.5.1 Ground connection

Recommendation for ground strap between controller ground and system chassis.

Material	L (Length max.)	B1 (min.)	B2 (min.)	d1 (∅)	d2 (∅)
copper tinned	200 mm	25 mm	25 mm	4.5 mm	customized

- Connection plates of ground strap must be total plane for a good electrical contact!
- The connection point at chassis (FE) must be blank metal (not coated). It is also
 possible to connect the ground strap at system chamber if it is well connected to
 PE.
- Avoid low chassis cross section to the system PE connection. (min. same cross section as ground strap)

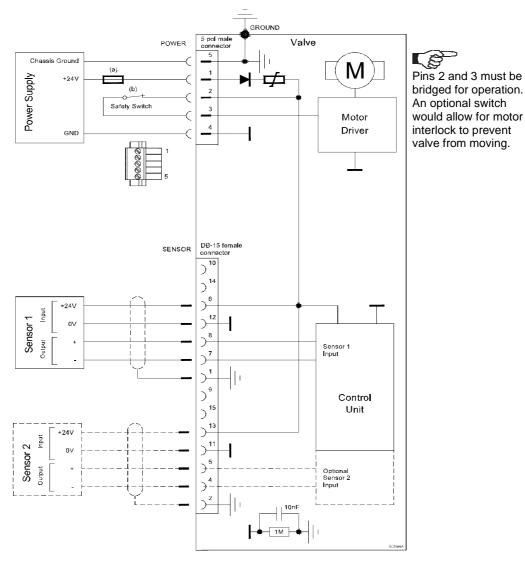
4.5.2 Sensor supply concepts

Those valves offer 4 alternative concepts to supply the sensor(s) with power. This depends on the sensor type and valve version that is used. Concepts:

- External +24 VDC supplied to POWER connector is feedthrough to SENSOR connector to supply 24 VDC sensors. Refer to chapter «Power and sensor connection (+24 VDC sensors)» for schematic and correct wiring.
 - o +24 VDC power to supply +24 VDC sensors via controller

INSTALLATION

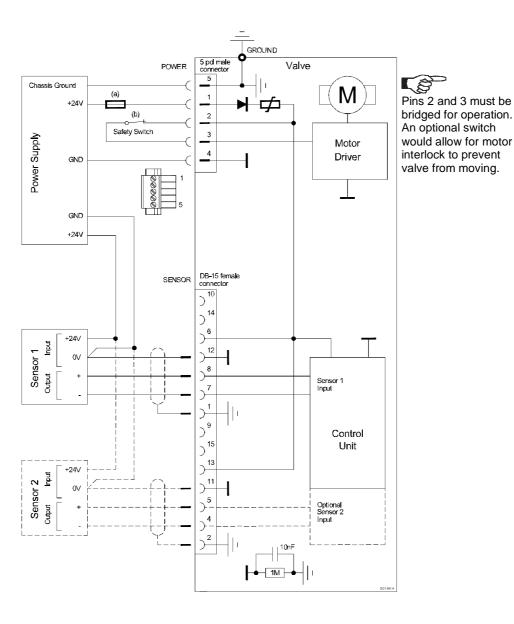
- o +24 VDC power to supply +24 VDC sensors externally
- External +24 VDC supplied to POWER connector is converted into ±15 VDC by the valve internal SPS
 and supplied to SENSOR connector to supply ±15 VDC sensors. Refer to chapter «Power and sensor
 connection (±15 VDC sensors) with SPS module» for schematic and correct wiring.
- External ±15 VDC power to supply ±15 VDC sensors without SPS option externally. Refer to chapter «Power and sensor connection (±15 VDC sensors) without SPS module» for schematic and correct wiring.


The SPS module can be retrofitted. Refer to chapter «Retrofit / replacement procedure» for instruction.

4.5.3 Power and sensor connection (+24 VDC sensors)

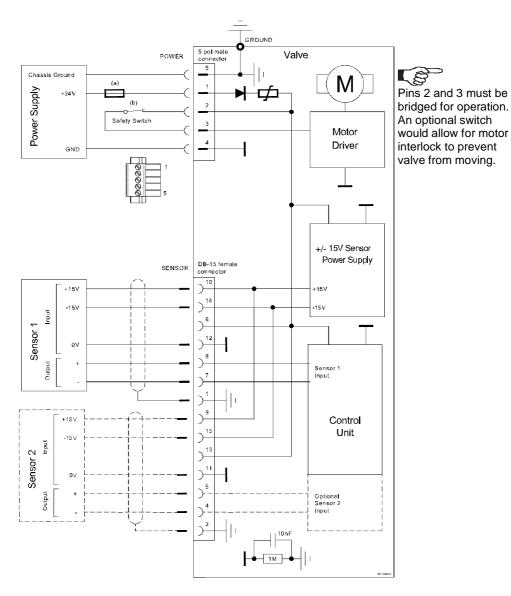
[642 . . - . . **G** . - . . . / 642 . . - . . **H** . - versions recommended]

4.5.3.1 +24 VDC power to supply +24 VDC sensors via controller



- VAT fuse recommendation: (a) 5AF, / (b) Safety switch min. 3A
- Use shielded sensor cable(s). Keep cable as short as possible, but locate it away from noise sources.
- Connect Power supply (+24 / GND) at power 5 pol. male connector and Sensors (+24V / 0V / + / -) at DB–15 female sensor connector exactly as shown in the drawing above!

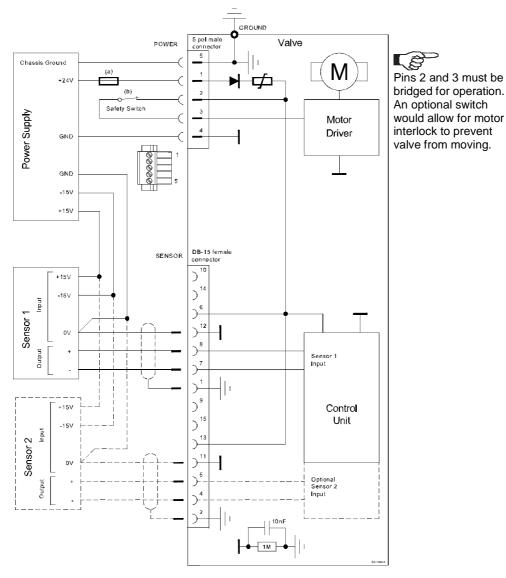
4.5.3.2 +24 VDC power to supply +24 VDC sensors externally



- VAT fuse recommendation: (a) 5AF, / (b) Safety switch min. 3A
- Use shielded sensor cable(s). Keep cable as short as possible, but locate it away from noise sources.
- Connect Power supply (+24 / GND) at power 5 pol. male connector and Sensors (0V / + / -) at DB-15 female sensor connector exactly as shown in the drawing above!

4.5.4 Power (+24 VDC) and sensor connection (±15 VDC sensors) with SPS module

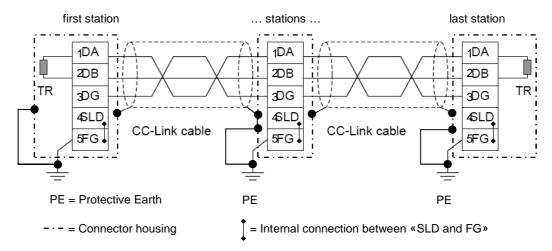
 $[642\ldots \textbf{-}\ldots\textbf{A}\ldots - 642\ldots \textbf{-}\ldots\textbf{C}\ldots \text{versions only}]$


- VAT fuse recommendation: (a) 5AF, / (b) Safety switch min. 3A
- Use shielded sensor cable(s). Keep cable as short as possible, but locate it away from noise sources.
- Connect Power supply (+24 / GND) at power 5 pol. male connector and Sensors (0V / + / - / ±15 V) at DB–15 female sensor connector exactly as shown in the drawing above!

4.5.4.1 External sensor power wiring without SPS module

[642 . . - . . **G** . - . . . / 642 . . - . . **H** . - . . . versions only]

INSTALLATION



- VAT fuse recommendation: (a) 5AF, / (b) Safety switch min. 3A
- Use shielded sensor cable(s). Keep cable as short as possible, but locate it away from noise sources.
- Connect Power supply (+24 / GND) at power 5 pol. male connector and Sensors (0V / + / -) at DB-15 female sensor connector exactly as shown in the drawing above!

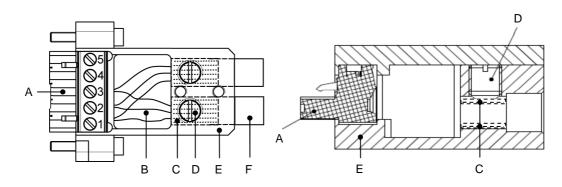
4.5.5 CC-Link interface connection

4.5.5.1 CC-Link cable installation (example)

TR = Terminal resister (Must be compatible to used CC-Link cable version!)

The valve can be defined as «first station», «...stations...» between first and last, or «last station».

If the valve at first or last station, «TR» must be installed between 1 (DA) and 2 (DB).


The station type for VAT valves are: Version 2 Remote Device Station.

4.5.5.2 Preparing CC-Link connector

		Description	Required tool
1.	Remove «COMBICOM» connector (A) at valve controller	CC-LINK V2 sample picture	
2.	Prepare all parts of connector for installation All parts of connector are supplemented in a plastic bag (407612), except «COMBICOM» connector from valve controller		

4.5.5.3 CC-Link connector overview

- A COMBICON D Strain-relief screw for shield mesh and cable
- B CC-Link wires E Connector housing VAT
- C Shield mesh F CC-Link cable

4.5.5.4 Install CC-Link cable at valve controller

Description			Required tool
3.	Remove the cable coat carefully Cable Pos. A, x about 30mm Cable Pos. B, x about 40mm Pos. see step 8	X	Knife
4.	Cut off the shield wire		Side-cutting pliers
5.	Cut off the aluminum shield and remove it		Side-cutting pliers
6.	Cut off the plastic and remove it Take care to the wires. Do not damage the isolation of wires!		Side-cutting pliers
7.	Cut off the shield wires about 15mm Separate the shield wires in two equal quantum and place them 180° opposite	15mm	Side-cutting pliers

	D	Required tool	
9.	Remove the wire coat carefully about 5mm	5mm	Wire strippers
10.	Insert the cable(s) at connector hosing as shown in the pictures, see also chapter CC-Link connector If valve in CC-Link network is at «first or last station» install the CC-Link cable at position A and close B with blind plug C. If valve in CC-Link network at «stations» install the CC-Link cables at position A and B.	Shield C Pos. A Pos. B	
11.	Fasten the strain-relief screw until the cable can not pulled out by manual force		Screw driver size 4

Description			Required tool
12.	Install the CC-Link wires, see also «Connector type» table below If cable at pos. A (first or last station) install «TR» between 1 and 2 1 x blue to 1 1 x white to 2 1 x yellow to 3 If cables at pos. A + B (stations) install 2 x blue to 1 2 x white to 2 2x yellow to 3		Screw driver size 1
13.	Close the cover of connector and fasten the screws a little		Pozidriv screw driver size 2
14.	Connect the connector and fasten it with the screws at controller (sample picture)	RVICE RUN CC-LINK V2	Allen Wrench 2.5 mm
15.	Push the cover down to controller and fasten the cover screws (sample picture)	RVICE RUN CC-LINK V2	Pozidriv screw driver size 2

Connector type: COMBICON 2.5 / 5 - ST – 5, 08 with special VAT housing

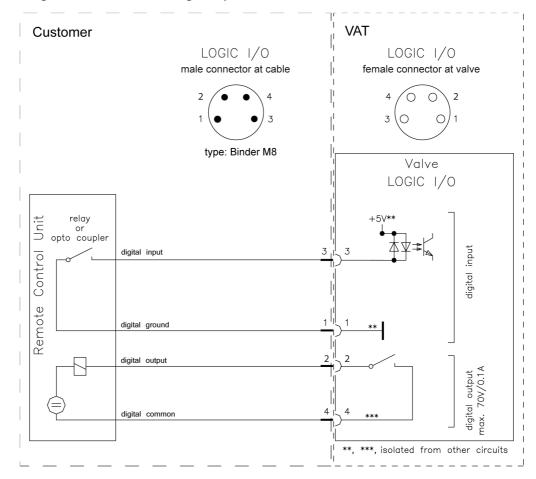
PIN interface connector	Signal	Color of isolator (CC-Link wires)	Comment
1	DA	Blue	Positive RS485 RxD/TxD
2	DB	White	Negative RS485 RxD/TxD
3	DG	Yellow	Signal Ground
4	SLD	-	Cable Shield
5	FG	-	Functional Ground

The CC-Link interface is galvanic isolated from control unit.

4.5.5.5 CC-Link network and cable

For detail information about *«CC-Link cable, wiring and TR»* refer to CC-Link homepage: http://www.cc-link.org > «CC-Link Cable Wiring Manual»

4.5.6 LOGIC I/O


This interface allows for remote operation by means of a command set based on the CC-Link protocol. In addition there is a digital input and a digital output. Digital input may only be operated by a switch.

Active digital input has:

- higher priority than CC-Link commands
- higher priority than Local commands

Configuration with switch for digital input:

Do not connect other pins than indicated in the schematics above! Connector type: Binder M8 (99-3363-00-04).

4.5.6.1 Digital input

Pin	Signal type	Description
3	Digital input	This function will close the valve. Valve will be in interlock mode as long as function is activated. After deactivation of function it will remain effective until - converse CC-Link control command have been received The function is activated when optocoupler is 'on' in non inverted configuration. The function is activated when optocoupler is 'off' in inverted configuration. Configuration can be adjusted in local operation via service port with CV, CPA or Hyper terminal. Refer to chapter: «LOGIC I/O configuration».
1	Digital ground	Ground for digital input. Connect switch to ground. See also chapter: «LOGIC I/O».

The digital input is digitally filtered. Filter delay is 50ms. This means that digital signal must be applied for at least 50ms to be effective. Refer to chapter: «LOGIC I/O » for details about input circuit.

4.5.6.2 Digital output

Pin	Signal type	Description
2	Digital output	This function will indicate that the valve is closed. If the function "ON" is configured the output is continous on. Configuration can be changed in local operation via service port with CV, CPA
		or Hyper terminal. Refer to chapter: «LOGIC I/O configuration».
4	Digital common	Common for all digital output. Connect + or – terminal of source with common. See also chapter: «LOGIC I/O ».

4.5.7 Service port connection

The service port (connector: SERVICE) allows to connect the valve to a RS232 port of a computer. This requires a service cable and software from VAT.

You can use our Software (freeware) 'Control Performance Analyzer' which can be downloaded from: http://www.vatvalve.com/customer-service/informations-and-downloads/control-performance-analyzer. Alternatively the VAT Service Box2 can be connected to the service port for setup and local operation. The service port is not galvanic isolated. Therefore we recommend using this only for setup, testing and maintenance and not for permanent control.

Refer also to chapter: "Local Operation" for details and to chapter "Spare parts / Accessories" for ordering numbers of service cable, software and Service Box 2.

Use only screws with 4–40 UNC thread for fastening the service port connector.

4.6 Initial operation

4.6.1 Setup procedure

To enable the valve for **pressure control** setup steps **1 to 6 must be performed**. In case position control is required only it's sufficient to perform steps **1 to 5**.

Setup step		Description		
1	Power up	Turn on external + 24VDC power supply (and external ± 15 VDC for sensor power supply if required). Refer to chapter «Behavior during power up» for details.		
2	CC-Link configuration	Station Number Transmission rate Operational settings mode Refer to chapter «CC-Link configuration» for details.		
3	Valve configuration	Basic configurations of the valve must be adapted according to application needs. Refer to chapter «Valve configuration» for details.		
4	Sensor configuration	Basic configurations of the valve must be adapted according to application needs. Refer to chapter «Sensor configuration» for details.		
5	ZERO	Compensation of the sensor offset voltage. Refer to chapter «ZERO» for details.		
6a	LEARN	Determination of the vacuum system characteristic to accommodate the PID controller. Refer to chapter «LEARN adaptive» for details.		
6b	PRESSURE CONTROL COFIGURATION	Accommodation of PID controller to the vacuum system characteristic. Refer to chapter: «Pressure Control configuration» for details.		

- Without «LEARN adaptive» or «Pressure Control configuration» the valve is not able to run pressure control.
- For ease setup (in Local mode) of 'Interface', 'Valve', 'Sensor', 'Sensor', 'Sensor', 'LEARN' and 'PRESSURE CONTROL COFIGURATION' it is possible to use the CPA 3.0, The free download is available on the VAT homepage:
 http://www.vatvalve.com/customer-service/informations-and-downloads/control-performance-analyzer

4.6.2 CC-Link configuration

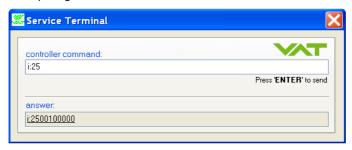
The station type for VAT valves are: Version 2 Remote Device Station.

1. Station Number

The «station number» is used to distinguish between stations on the CC-Link network. Unique station numbers in consecutive order without duplication must be used, when assigning stations to the CC-Link network.

The «station number» can be configured by 'Control View', 'Control Performance Analyzer' or 'Universal Hyper Terminal'.

The **«set-command»** is: **«s:25xxx00000»**. The xxx value is the **«**station number**»**. Valid range is 001 to 064.


The **«get-command»** is: **«i:25»**. The answer returns the node address \rightarrow **«i:25**xxx00000». The xxx value is the current **«station number»**.

Consider that the controller must be in local mode to accept the commands! After a «s:25» command is sent the module is reseted and starts up again.

«c:0100» → change into local mode

«c:0101» → change into remote mode

Example «get-command» with Terminal:

2. Transmission rate

Use the same «transmission rate» for all stations in the bus and also for master station. If any of the settings for at least one station is different, data link cannot be established normally.

The «transmission rate» can select from 156 kbps / 625 kbps / 2.5 Mbps / 5 Mbps / 10 Mbps

The «transmission rate» can be configured by 'Control View', 'Control Performance Analyzer', or 'Universal Hyper Terminal'.

The **«set-command»** is: **«s:21xxx00000»**. The xxx value is the **«transmission rate»** shown in the table below

The **«get-command»** is: **«i:21»**. The answer returns the **«transmission rate»** → **«i:21xxx00000»**. The xxx value is the current **«transmission rate»**.

Consider that the controller must be in local mode to accept the commands! After a s:21 command is sent the module is reseted and starts up again.

«c:0100» → change into local mode

«c:0101» → change into remote mode

Value	Transmission rate
000	156 kbps
001	625 kbps
002	2.5 Mbps
003	5 Mbps
004	10 Mbps

3. Operational settings mode

The «operational settings mode» defines the following CC-Link parameters:

- CC-Link version
- Number of occupied stations: The number of stations (occupying one stations worth of memory area) used by a single slave station in a network.
- **Extended cyclic settings**: In the extended cyclic transmission (only Ver.2), the extended cyclic points can be set as 2 times, 4 times or 8 times of the normal cyclic transmission points.

The VAT slave supports two combinations of the CC-Link parameter settings.

Value	Operational settings	
001	CC-Link Ver.2 / Occupies 1 station / Octuple expanded cyclic	
004	CC-Link Ver.2 / Occupies 4 stations / Double expanded cyclic	

The «operational settings mode» can be configured by 'Control View', 'Control Performance Analyzer', 'Universal Hyper Terminal' or 'Service Box 2'.

The «set-command» is: «s:22xxx00000». The xxx value is the operational settings mode!

The **«get-command»** is: **«i:22»**. The answer returns the **«operational settings mode»** → **«i:22xxx00000»**. The xxx value is the current operational settings mode.

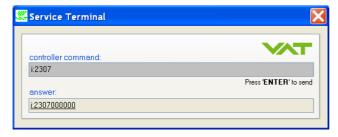
Consider that the controller must be in local mode to accept the commands! After a s:22 command is sent the module is reseted and starts up again.

«c:0100» → change into local mode

«c:0101» → change into remote mode

4. Data type of pressure and position values (optional)

The «data type of pressure and position» can be configured by 'Control View', 'Control Performance Analyzer', or 'Universal Hyper Terminal'.


The **«set-command»** is: **«s:23xxy00000»**. The xxy value is the data type of a pressure and position signal.

y: 0 = signed integer(32 bit), 1 = floating point (32 bit, IEEE-754 standard), default = $0 \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2}$

XX	Value
00	Pressure
01	Pressure sensor 1
02	Pressure sensor 2 (optional, only in case of 2 sensor version)
03	Position
04	Not used – reserved
05	Not used – reserved
06	Pressure setpoint
07	Position setpoint
08	Not used – reserved
09	Not used – reserved
10	Not used – reserved
11	Not used – reserved

The **«get-command»** is: **«i:23xx»**. The answer returns the data type of a pressure and position signal → **«i:23xxy00000»**. The y value is the current data type of buffer value xx.

Example «get-command» with Terminal: Get the data Type of Position setpoint:

If at start up the data type value in the memory is out of range the default value is taken. In this case the data type is set to default value (0 = singed integer) and the get command i:23 add a string "False":

5. Range of pressure and position values (optional)

The «range of pressure and position values» can be adjusted. That means:

- For position values, the value for valve position "CLOSE" and the valve position "OPEN" can be set to a other ones then the default 0...100'000 is.
- For pressure values, the value for physical **0 Volt** and **10 Volt** of the sensor output can be set to other values then the default 0...1'000'000 is.

The range of pressure and position values can be configured by 'Control View', 'Control Performance Analyzer' or 'Universal Hyper Terminal'.

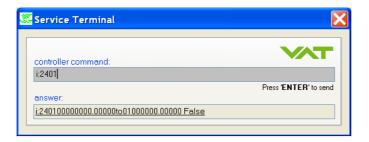

The «set-command» is: «s:24xxytoz».

y: **lower scale value**, floating point, entry with a point '.' and '-' for negative values possible z: **upper scale value**, floating point, entry with a point '.' and '-' for negative values possible xx: signal number in the buffer

		Default range		Min/Max range	
xx	Value	Default lower scale value	Default upper scale value	Min lower scale vlaue	Max upper scale value
00	Pressure	0	1'000'000	-1'000'000	1'000'000
01	Not used – reserved	-	-	-	-
02	Not used – reserved	-	-	-	-
03	Position	0	100'000	-1'000'000	1'000'000
04	Not used – reserved	-	•	-	-
05	Not used – reserved	-	-	-	-
06	Pressure setpoint	0	1'000'000	-1'000'000	1'000'000
07	Position setpoint	0	100'000	-1'000'000	1'000'000
08	Not used – reserved	-	-	-	-
09	Not used – reserved	-	-	-	-
10	Not used – reserved	-	-	-	-
11	Not used – reserved	-	-	-	-

Examples:i:2400-0012345.12345to00123456.12345 i:2401-0001000.00000to00001000.00000 i:240200001000.0000to00001500.00000

Example «get-command» with Terminal: Get the range of Pressure Sensor 1:


The «range of pressure and position values» is independent of the data type, equal for «signed integer» and «floating point».

The internal accuracy of valve is for all positions 100'000 steps and for all pressures 1'000'000 steps. If the range of pressure and position values is rising, the accuracy of pressure and position will not rise. There is only the gain factor between the VAT valve and the CC-Link Master which will be adapted.

(upper scale value - lower scale value) ≥ 1

If at startup the scale values in the memory are out of range or the rule above is broken the default values are taken. In this case the get command i:24 add a string "False":

Example: s:24031234.56to7890 → set the range of position from 1234.56 (= closed position) to 7890 (= opened position)

Example: s:24000to100.75 \rightarrow set the range of pressure from 0 (= 0 V) to 100.75 (= 10 V)

Example: s:2411-10.5to20.5 → set the range of cluster valve freeze position from -10.5 (=closed position) to 20.5 (=opened position)

4.6.3 LOGIC I/O configuration

The «logic digital input close valve» can adjusted. See also chapter «LOGIC I/O».

The «logic digital input close valve» can be configured by 'Control View', 'Control Performance Analyzer', 'Universal Hyper Terminal' or 'Service Box 2'.

The «set-command» is: «s:20000000a0».

The **«get-command»** is: **«i:20»**. The answer returns the **«operational settings mode»** → **«i:200000000a0»**.

Description:

Dooonpao.	2 cooripacin.		
code	description	data range	
s:20	command header		
а	mode selection	0 = non inverted	
		1 = inverted	
		2 = disabled	

4.6.4 Valve configuration

Basic valve configuration must be adapted according to application needs. Definition of valve plate position in case of:

- After power up, default is 'close'.
- Network failure, for default settings refer to individual product data sheet.

Local operation: ('Control View', 'Control Performance Analyzer' or 'Service Box 2')	Remote operation:
With CPA: Do valve configuration in menu 'Valve / Setup'. With SB2: Do power up configuration in menu 'Setup / Valve'. Do power fail configuration in menu 'Setup / Valve'.	It is not possible to do 'Valve configurations' via CC-Link.

4.6.5 Sensor configuration

Basic sensor configuration must be adapted according to application needs.

- ZERO function: This may be 'disabled' or 'enabled'. Default is 'enabled'. Refer also to chapter «ZERO».
- Sensor configuration with 2 sensor version [642 N . . .]. Refer also to chapter: «Pressure control operation with 2 sensors».

Local operation: ('Control Performance Analyzer' or 'Service Box 2')	Remote operation:
 With CPA: Do sensor configuration in menu 'Sensor / Setup'. With SB2: Enable or disable ZERO function in menu 'Setup / Sensor'. Do 2 sensor configuration in menu 'Setup / Sensor'. 	It's not possible to do 'Sensor configuration' via remote operation.

4.6.6 ZERO

ZERO allows for the compensation of the sensor offset voltage.

When ZERO is performed the current value at the sensor input is equated to pressure zero. In case of a 2 sensor system both sensor inputs will be adjusted. A max. offset voltage of +/- 1.4 V can be compensated. The offset value can be read via local and remote operation.

Local operation: ('Control Performance Analyzer' or 'Service Box 2')	Remote operation: (Refer to chapter «OUTPUT Buffer» > «GENERAL CONTROL SETPOINT» for details)		
With CPA: • Do the ZERO in menu 'Sensor / Zero'. With SB2:	Wait until process chamber is evacuated and sensor signal is not shifting anymore.		
Go to menu 'Zero / ZERO' and follow instructions.	2. In «OUTPUT Buffer» > «GENERAL CONTROL SETPOINT» set [ZERO] (value = 1) only short impulse ca. 1sec.		
	3. Wait until «ZERO EXECUTED» (value = 1) (see INPUT Buffer). (**Tenders**)		

- Do not perform ZERO as long as pressure gauge voltage is shifting otherwise incorrect pressure reading is the result. Refer to manual of sensor manufacturer for warm up time.
- Do not perform ZERO, if the base pressure of your vacuum system is higher than 1‰ of sensor full scale. We recommend disabling ZERO function in this case; refer to «Valve and sensor configuration» of the setup procedure. Otherwise incorrect pressure reading is the result.

4.6.7 LEARN (adaptive)

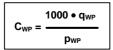
LEARN adapts the PID controller of the valve to the vacuum system and its operating conditions. LEARN must be executed only once during system setup. The LEARN routine determines the characteristic of the vacuum system. Based on this, the PID controller is able to run fast and accurate pressure control cycles.

This characteristic depends on various parameters such as chamber volume, conductance and flow regime. Therefore it must be performed with a specific gas flow according to instruction below. The result of LEARN is a pressure versus valve position data table. This table is used to adapt the PID parameters. The data table is stored in the device memory which is power fail save. The data table can be up-/downloaded via 'Control Performance Analyzer' software or remote interface. Due to encoding the data may not be interpreted directly.

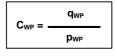
By an OPEN VALVE, CLOSE VALVE, POSITION CONTROL or PRESSURE CONTROL command the routine will be interrupted.

Local operation: ('Control View', 'Control Performance Analyzer' or 'Service Box 2')	Remote operation:	
	Go to «OUTPUT Buffer» > «CONTROL MODE SETPOINT», set «Open Valve» (value = 4)	
Go to 'Learn / LEARN' menu and follow instructions. Remark: Gasflow calculation according to	 Set specific gas flow according to calculation below and wait until flow is stable. Autolearn does not need to be performed with the process gas. Instead N₂ or Ar may be used. 	
recommendation below is done automatically based on inputs.	3. Go to «OUTPUT Buffer» > «CONTROL MODE SETPOINT»	
	4. Set «Learn» (value = 7)	
	5. In «INPUT Buffer» > «CONTROL MODE» value 7 (Learn) is display, as long Learn is running. If Learn is finished, value 7 is no more displayed.	

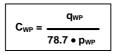
Sensor signal must not shift during LEARN. Wait until sensor signal is stable before LEARN is performed. Learn may take several minutes. Do not interrupt the routine as a single full run is required to ensure fast and accurate pressure control. The PID controller covers 5% to 5000% of the gas flow which was used for learn.



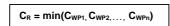
Gasflow calculation for LEARN:



Do not apply a different gasflow for learn than determined below. Otherwise pressure control performance may be insufficient. Required pressure / flow regime must be known to calculate the most suitable learn gas flow for a specific application.


1. At first it is necessary to find out about the required control range respectively its conductance values. Each working point (pressure / flow) must be calculated with one following formulas. Choose the applicable formula depending on units you are familiar with.

C_{WP} required conductance of working point [l/s] q_{WP} gasflow of working point [Pa m3/s] pressure of working point [Pa]



C_{WP} required conductance of working point [l/s] q_{WP} gasflow of working point [mbar l/s] pressure of working point [mbar]

C_{WP} required conductance of working point [l/s] q_{WP} gasflow of working point [sccm] p_{WP} pressure of working point [Torr]

2. Out of these calculated conductance values choose the lowest.

C_R required lower conductance [l/s]
C_{WPx} required conductance of working points [l/s]

To make sure that the valve is capable to control the most extreme working point verify that CR ≥ Cmin of the valve (refer to «Technical data»).

3. Calculate gasflow for learn. Choose the applicable formula depending on units you are familiar with.

$$q_L = \frac{p_{SFS} \bullet C_{min}}{1100}$$

q_L gasflow for learn [Pa m³/s]
p_{SFS} sensor full scale pressure [Pa]
C_{min} min. controllable conductance of valve [l/s], (refer to «Technical data»)

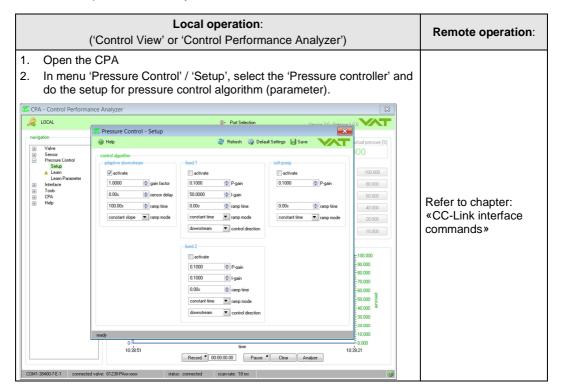
 $\begin{array}{ll} q_L & \text{gasflow for learn } [\textbf{mbar l/s}] \\ p_{SFS} & \text{sensor full scale pressure } [\textbf{mbar}] \\ C_{min} & \text{min. controllable conductance of valve } [\text{l/s}], \text{ (refer to } \\ \text{``Technical data''}) \end{array}$

 $\begin{array}{ll} q_L & \text{gasflow for learn } [\textbf{sccm}] \\ p_{SFS} & \text{sensor full scale pressure } [\textbf{Torr}] \\ C_{min} & \text{min. controllable conductance of valve } [\text{I/s}], \text{ (refer to } \\ \text{``Technical data''}) \end{array}$

4.6.8 Pressure control configuration

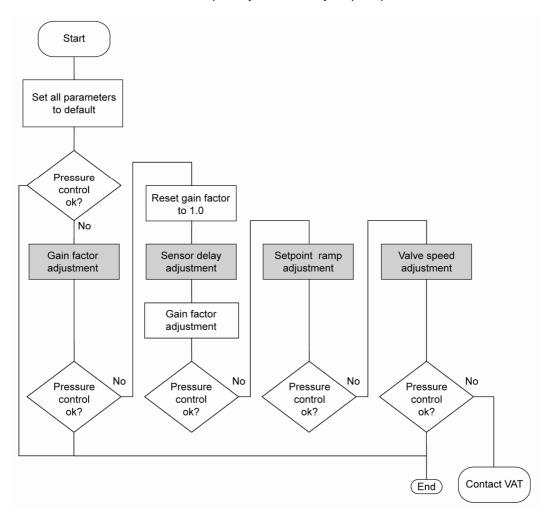
System Configuration	Constant gas flow available		Constant gas flow not
System Comiguration	Tv*<= 500 sec	Tv* > 500 sec	available
Downstream Gas inlet Process chamber Control valve Pump	Adaptive pressure controller (Refer to chapter: Pressure controller)		essure controller er: Pressure controller)
Upstream Control valve Process chamber Pump	Fixed pressure controller (Refer to chapter: Pressure controller)		
Soft Pump	Soft Pump (Refer to chapter: Pressure controller)		

Use the formula below to define the applicable pressure control algorithm.


Tv =	P _{SFS} • CV		gasflow for learn [mbarl/s] sensor full scale pressure [mbar]
	q ∟	Tv*	Vacuum time constant [sec] Chamber Volume [I]

4.6.8.1 Pressure controller

For easy setup (Local operation) of 'Pressure controller' and 'Pressure control parameter' please use the VAT "Control Performance Analyzer" CPA 3.0. There is a free download on the VAT home page, refer to: http://www.vatvalve.com/customer-service/informations-and-downloads/control-performance-analyzer


4.7 Tuning of control performance

- Tuning of pressure control performance with adaptive control, refer to chapter: 4.7.1 Tuning of control performance with adaptive pressure controller
- Tuning of pressure control performance with PI control, refer to chapter: 4.7.2 Tuning of control performance with fixed PI pressure controller
- Tuning of control pressure performance with Soft pump, refer to chapter: 4.7.3 Tuning of control performance with soft pump pressure controller

4.7.1 Tuning of control performance with adaptive pressure controller

Normally the default settings will result in good pressure control performance. For some applications tuning may be required to improve performance. The tuning procedures for each parameter (grey boxes) and its default values are described separately below. Strictly keep the procedure order.

Series 642

4.7.1.1 Gain factor adjustment

The gain factor effects: Stability, Response time

Adjustment range is from 0.0001 to 7.5.

- Higher gain results in: faster response / higher over- / undershoot of pressure Lower gain results in: slower response/ lower over- / undershoot of pressure

Adjustment procedure:

- 1. Start with gain factor 1.0
- 2. Open valve.
- 3. Control a typical pressure / flow situation.
- 4. Repeat from step 2 with lower (higher) gain factors until optimal pressure response is achieved and stability is ok.

Normally adjustments down to gain factors of 0.42 should lead to good results. Otherwise you may need to improve sensor connection. Refer to «Requirements to sensor connection».

Local operation: ('Control Performance Analyzer' or 'Service Box 2')	Remote operation:
 With CPA: Do the 'Gain Factor' adjustment in menu 'Pressure Control' / 'Setup' / 'adaptive downstream'. With SB2: Do the 'Gain Factor' adjustment in menu 'Setup / Control Parameter' 	It's not possible via «Remote operation»

4.7.1.2 Sensor delay adjustment

Sensor delay adjustment effects: Stability

Adjustment range is from 0 to 1.0s.

Pipes and orifices for sensor attachment delay response time and so badly impact pressure control stability.

By adapting this parameter to the approximate delay time stability problems can be reduced. But control response time will be slowed down by this measure.

Whenever possible sensors should be attached to the chamber according to «Requirements to sensor connection». This is the most effective measure against stability issues. If your gauge attachment fulfills these criteria do not use this parameter.

Adjustment procedure:

- 1. Start with gain factor 1.0 and sensor delay 0s.
- 2. Open valve.
- 3. Control a typical pressure / flow situation.
- 4. Repeat from step 2 with higher sensor delays until best possible stability is achieved.
- 5. Adjustment gain factor again. Refer to «Gain factor adjustment».

Local operation: ('Control Performance Analyzer' or 'Service Box 2')	Remote operation:
 With CPA: Do the 'Sensor Delay' adjustment in menu 'Pressure Control' / 'Setup' / 'adaptive downstream'. With SB2: Do the 'Sensor Delay' adjustment in menu 'Setup / Control Parameter' 	It's not possible via «Remote operation»

4.7.1.3 Setpoint ramp adjustment

Setpoint ramp effects: Undershoot of pressure, Response time

Adjustment range for Setpoint Ramp is from 0 to 10 s.

This parameter defines the time that is used to decrease / raise pressure between 2 setpoints. Especially in <u>pressure decrease</u> situations at <u>low flows</u> pressure response can be improved much by adapting setpoint ramp time.

Pressure chart

Without setpoint ramp optimizing PSFS PSTART PEND Without setpoint ramp optimizing With setpoint ramp optimizing

Choose the applicable formula depending on units you are familiar with.

t = Setpoint Ramp

Adjustment procedure:

- 1. Start with optimal gain factor and sensor delay time according to preceding tuning steps.
- 2. Control a typical pressure / flow situation.
- 3. Control a lower pressure.
- 4. Repeat from step 2 with longer setpoint ramps until best response is achieved.
- 5. Verify pressure control response for a setpoint raise situation.

In case a long ramp time is required to get optimal performance for pressure decrease situations it may be of advantage to apply different settings for decrease / raise control situations.

Local operation : ('Control Performance Analyzer' or 'Service Box 2')	Remote operation:
 With CPA: Do the 'Ramp Time' and 'Ramp Mode' adjustment in menu 'Pressure Control' / 'Setup' / 'adaptive downstream'. With SB2: Do the 'Setpoint Ramp' adjustment in menu 'Setup / Control Parameter' (Ramp Mode is not possible with SB2) 	It's not possible via «Remote operation»

4.7.1.4 Valve speed adjustment

Valve speed effects: Response time

Default value is 1000. Adjustment range is from 1 to 1000.

This parameter effects valve plate actuating speed. Speed adjustment is effective for PRESSURE CONTROL and POSITION CONTROL.

Normally best pressure control response is achieved with max. valve speed. In particular applications it may be of advantage to have a slower valve response. OPEN and CLOSE are always done with maximum speed.

Adjustment procedure:

- 1. Use optimal gain factor, sensor delay time and setpoint ramp according to preceding tuning steps.
- 2. Open valve.
- 3. Control a typical pressure / flow situation.
- 4. Repeat from step 2 with slower valve speed until required response is achieved.

Local operation : ('Control Performance Analyzer' or 'Service Box 2')	Remote operation:
 With CPA: Do the 'Valve Speed in menu 'Valve' / 'Setup' / 'valve speed'. With SB2: Do the 'Valve Speed' adjustment in menu 'Setup / Control Parameter' 	It's not possible via «Remote operation»

Required information for support:

- Go to 'Tools / Create Diagnostic File' in 'Control View' resp. 'Control Performance Analyzer' and save file
- Pressure / flow / gas conditions to be controlled
- Chamber volume
- Pumping speed (I/s) and pump type (e.g. turbo pump)
- System description
- Problem description

Send diagnostic file with and all required information to tuning-support@vat.ch

4.7.2 Tuning of control performance with fixed PI pressure controller

4.7.2.1 Optimizing P gain and I gain

This valve may be used for downstream or upstream pressure control depending on configuration. The PI parameters of the pressure controller require correct adjustment. These parameters must be set once during system setup and are stored in the device memory which is power fail save. Based on the PI controller configuration, the valve is able to run fast and accurate pressure control cycles. The PI parameters can be evaluated using below instruction.

- In downstream control mode valve will move towards open when current pressure is higher than set point.
- In upstream control mode valve will move towards close when current pressure is higher than set point.

Local operation: ('Control Performance Analyzer')	Remote operation:
 With CPA: Do the 'Fixed 1' or 'Fixed 2' adjustment in menu 'Pressure Control' / 'Setup' / 'fixed 1' / 'fixed 2'. 	It's not possible via «Remote operation»

Introduction

PI controller mode is used if for any reason (e.g. too long system time constant) the adaptive control mode does not provide satisfying control performance.

In PI controller mode the parameters P gain and I gain have to be set according to the systems characteristics. The best set of parameters can be found by using the empiric method below.

1. Optimizing P gain and I gain

1.1 Pressure and gas flow for optimization

A PI controller delivers the best results for a certain working point (pressure/gas flow). If there is only one working point, this pressure and gas flow has to be used for optimizing P and I gain. If there are several working points that have to be covered, the pressure for optimizing is the medium pressure between highest and lowest pressure to be controlled, the gas flow for optimizing is the highest flow out of all working points.

Two different pressure set points are necessary for optimization. Set point 1 (SP1) is the pressure for optimizing as determined above. Set point 2 (SP2) is about 10 - 20% lower than SP1.

Example: pressure range: 4 – 10 Torr Flow range: 2 – 4 slm

Pressure set points and gas flow for optimization:

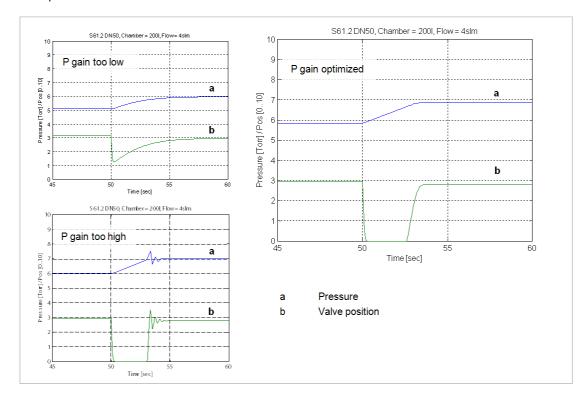
 SP1
 =
 7 Torr

 SP2
 =
 6 Torr

 Gas flow
 =
 4slm

1.2 Optimizing P gain

While optimizing P gain, the gas flow determined above has to be constant all the time.



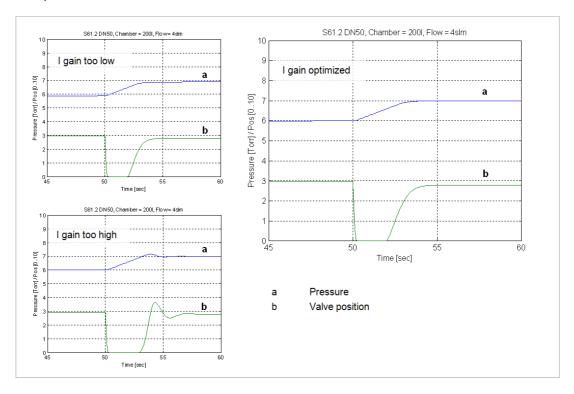
Start optimization with P gain set to 1.0 and I gain set to 0.0.

Set chamber pressure to SP2, wait until the pressure is stable. Set pressure to SP1. If the transition from SP2 to SP1 results in a significant pressure over shoot or even does not stabilize at all, the P gain is too high. If there is no over shoot and the pressure reaches SP1 asymptotically and very slow, P gain is too low.

The optimal P gain value is found if the transition from SP2 to SP1 results in a slight pressure over shoot. It does not matter if there is still a deviation between SP1 and actual pressure.

Example:

1.3 Optimizing I gain


While optimizing I gain, the gas flow determined above has to be constant all the time.

Start with P gain set to half of the value found when optimizing P gain and set I gain to 1.0. Keep the P gain constant.

Set chamber pressure to SP2, wait until the pressure is stable. Set pressure to SP1. If the transition from SP2 to SP1 results in a significant pressure over shoot or if the valve position does not stabilize, I gain is to high. If the transition results in a slow asymptotical pressure rise and there is still a constant deviation to SP2, the I gain is too low.

The optimal value for I gain is found if the transition from SP2 to SP1 result in just a slight pressure over shoot, a stable valve position and the actual pressure matches SP2 exactly.

Example:

Check control performance over the whole control range with parameters above.

Required information for support:

- Go to 'Tools / Create Diagnostic File' in 'Control View' resp. 'Control Performance Analyzer' and save file
- Pressure / flow / gas conditions to be controlled
- · Chamber volume
- Pumping speed (I/s) and pump type (e.g. turbo pump)
- System description
- Problem description

Send diagnostic file with and all required information to tuning-support@vat.ch

4.7.3 Tuning of control performance with soft pump pressure controller

4.7.3.1 Optimizing P gain

This valve may be used to control pressure ramps during pump down. The P parameter of the pressure controller requires correct adjustment. This parameter must be set once during system setup and is stored in the device memory which is power fail save. Based on the soft pump controller configuration, the valve is able to run fast and accurate pressure control cycles. The P parameter can be evaluated using below instruction.

Local operation: ('Control Performance Analyzer')	Remote operation:
With CPA: • Do the 'Soft pump' adjustment in menu 'Pressure Control' / 'Setup' / 'soft pump'.	It's not possible via «Remote operation»

Introduction

Pump down control mode allows a completely user-defined pressure profile, usually from atmosphere down to some process pressure

1. Optimizing P gain

The P gain value evaluated for soft pump control mode might be different than the P gain value evaluated for PI controller mode. When switching to pump down control mode the P gain value evaluated fort he PI controller has to be send to the valve controller. When switching back into PI controller mode the respective P gain value has to be send again.

Adaptive pressure control mode ignores any P gain value.

1.1 Basic settings

The pump down characteristic is determined by start pressure, end pressure and pump down time. This straight line from start pressure to end pressure.

The VAT soft pump controller requires a pump down time shorter than 10 sec. for good control results. If the required pump down time is longer than 10 sec., the pump down curve has to be partitioned into sections shorter than 10 sec. with corresponding end pressure.

Example:

Start pressure: 760 Torr End pressure: 10 Torr

Pump down time: 30 sec.

Here the pump down time and the corresponding pressure is being divided into three sections. The host sends a new pressure set point every 10 sec.:

Time	Set point
0 sec.	760 Torr
10 sec.	510 Torr
20 sec.	260 Torr
30 sec.	10 Torr

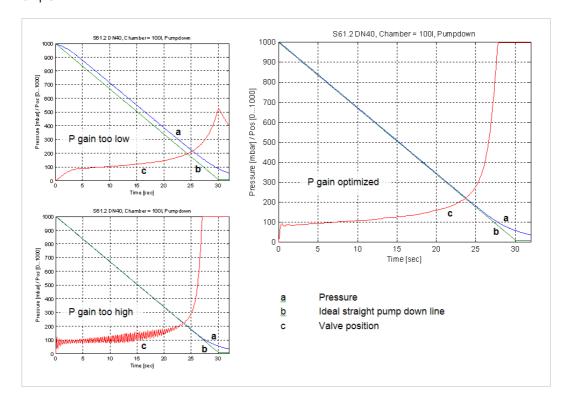
1.2 Optimizing P gain

WE start by setting the P gain to 1.0 as a trial value and adjust according to the response. The pump down routine has to be controlled as follows:

Move control valve into close position

Start pump down by opening the pump isolation valve or starting the pump and sending the first pressure set point to the valve controller. With the example above, the first pressure set point is 510 Torr. At each new interval (exceeding 10 sec) send the new pressure set point.

Repeat until process pressure is achieved.


While pumping down chamber pressure and valve position should be data logged to compare the actual pump down curve with the ideal straight pump down line.

If the pressure follows the ideal pump down line with significant delay, the P gain is too low.

If the pressure oscillates around the ideal pump down line or if the valve position oscillates, P gain is too high.

P gain is optimized if the pressure follows the ideal pump down line closely and the valve position is not oscillating at all.

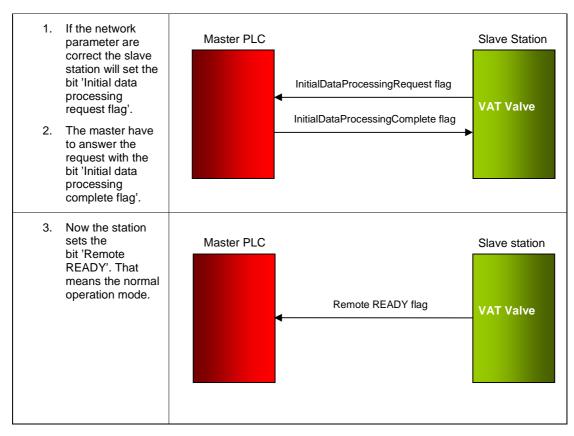
Example:

Required information for support:

- Go to 'Tools / Create Diagnostic File' in 'Control View' resp. 'Control Performance Analyzer' and save file
- Pressure / flow / gas conditions to be controlled
- Chamber volume
- Pumping speed (I/s) and pump type (e.g. turbo pump)
- System description
- Problem description

Send diagnostic file with and all required information to tuning-support@vat.ch

4.8 CC-Link interface commands


4.8.1 CC-Link Handshaking

Before the CC-Link slave station (VAT valve) can be operated by the CC-Link Master (PLC), handshaking is necessary. If the handshake is not done, no data from the master will be transmitted to station.

An indication of a successful handshaking is the bit «FIELDBUS DATA VALID» (= 1) in the input buffer > GENERAL STATUS.

The CC-Link "Network failure" is independent of the CC-Link handshaking. That means the "Network failure" is inactive if the handshaking is not done yet.

Procedure:

The Flag 'Remote READY' from slave station must be set for normal operation.

4.8.2 Location of the handshaking bits

Slave	e → Master	Master → Slave		
Device	Signal name	Device No.	Signal name	
RX m0		RY m0		
RX m1		RY m1	1	
RX m2		RY m2]	
RX m3		RY m3]	
RX m4		RY m4		
RX m5		RY m5		
RX m6		RY m6		
RX m7		RY m7		
RX m8	Not used	RY m8	Not used	
RX m9		RY m9		
RX mA		RY mA		
RX mB		RY mB		
RX mC		RY mC		
RX mD		RY mD		
RX mE		RY mE		
RX mF		RY mF		
to		to		
RX(m+n)0		RY(m+n)0		
RX(m+n)1		RY(m+n)1		
RX(m+n)2		RY(m+n)2		
RX(m+n)3	Reserved	RY(m+n)3	Reserved	
RX(m+n)4	Reserved	RY(m+n)4	Reserved	
RX(m+n)5		RY(m+n)5		
RX(m+n)6		RY(m+n)6		
RX(m+n)7		RY(m+n)7		
RX(m+n)8	Initial data processing request flag	RY(m+n)8	Initial data processing complete flag	
RX(m+n)9	Initial data setting complete flag	RY(m+n)9	Initial data setting request flag	
RX(m+n)A	Error status flag	RY(m+n)A	Error reset request flag	
RX(m+n)B	Remote READY	RY(m+n)B		
RX(m+n)C		RY(m+n)C		
RX(m+n)D	Reserved	RY(m+n)D	Reserved	
RX(m+n)E	1\c3civcu	RY(m+n)E		
RX(m+n)F		RY(m+n)F		

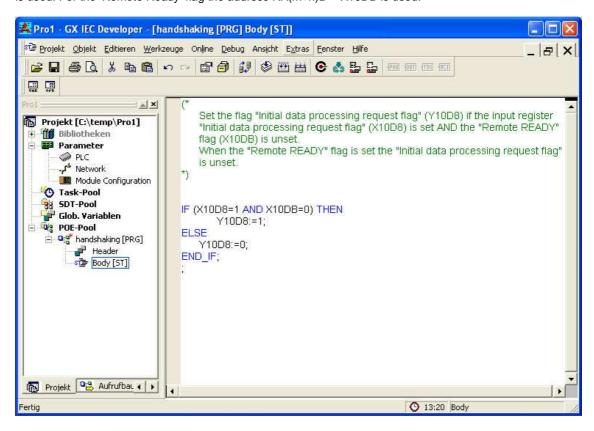
Table 1: Bit Memory Map Profile of VAT CC-Link slave

m: Address assigned to the master module by the station number setting. This means that the address range for this slave begins at address m of the master.

n: Dependent on the VAT Operational settings mode (number of occupied stations and number of extension cycles)

Operational settings mode = 1 → n = 0x7 (hex)
 Operational settings mode = 4 → n = 0xD (hex)

Example see chapter: 4.8.3 Example of the handshaking by a PLC-program.



4.8.3 Example of the handshaking by a PLC-program

The following program sends an answer to the VAT CC-Link station which return a "Remote READY" flag. It is important to correct register address is used. In this example the address for this slave station (valve) starts at 1000 (hex). So m = 100 (see capture

Location of the handshaking **bits**). The Operational setting mode of the slave is 4 – therefore n = D.

Table 1 said RX(m+n)8 for the location of the 'Initial data processing request flag'. So the address X10D8 is used. For the 'Remote Ready' flag the address RX(m+n)B = X10DB is used.

CC-Link interface (Process data – cyclic communication) 4.9

- The buffer naming is in view from customer (master) PLC.
- Data format: All signals are transmitted and received in intel format (low byte first).
- All one-byte signals use the least significant byte (LSB).

Neither valve display information nor CONTROL MODE values or any other fieldbus cyclic/acyclic data are related to any fieldbus states/notation

4.9.1 **OUTPUT Buffer (Master PLC)**

4.9.1.1 Overview

Data	Index	Buffer					
model	maex	Contents (MSB)	Contents (LSB)				
	0	Pressure setpoint					
	1						
	2	Position cotroint					
	3	Position setpoint					
	4						
	5						
	6	Not used -	- reserved				
	7	Not used	reserved				
	8						
40.1%	9						
16 bit (Word)	10	Not used – reserved	Control mode setpoint				
	11	General con	trol setpoint				
	12						
	13	Not used -	- reserved				
	14	,,,,,					
	15	Not used – reserved					
	16						
	17	7101 4004					
	18	Not used – reserved Not used – reserved					
	19	Not used -	- reserved				
	20	Not used – reserved	Not used – reserved				

For data consistency make sure your master PLC is supporting "block guarantee of cyclic data per station".

4.9.1.2 Details

Signal Type	Name	Start Word	Byte Length	Data Type	Valid Range	Description
Signal	PRESSURE SETPOINT	0	4	signed integer (default) or floating point	01'000'000 (default), adjustable ¹⁾	In case of the valve is is pressure mode (CONTROL MODE = Pressure (5)), the signal is used as setpoint value.
Signal	POSITION SETPOINT	2	4	signed integer (default) or floating point	0100'000 (default), adjustable ¹⁾	In case of the valve is is position mode (CONTROL MODE = Position (2)), the signal is used as setpoint value. min signal value (default 0) = "valve is closed" max signal value (default 100'000) = "valve is opened"
Signal	CONTROL MODE SETPOINT	10	1	unsigned integer	27	 2 = Position: Position control mode 3 = Close: The valve is closed 4 = Open: The valve is opened 5 = Pressure: Pressure control mode 6 = Hold: Valve is kept in current position; only valid in CONTROL MODE position and pressure 7 = Learn: Valve starts the internal learn procedure
Bitmap	GENERAL CONTROL SETPOINT	11	2	boolean array	-	See bitmap table below
-	NOT USED (reserved)	16	4	-	-	-
-	NOT USED (reserved)	18	1	-	-	-
-	NOT USED (reserved)	19	1	-	-	-
-	NOT USED (reserved)	20	1	-	-	-

To adjust range refer to chapter: «Range of pressure and position values»

GENERAL CONTROL SETPOINT bitmap table:

	Bit	Description			
0	ZERO	 0 = No Operation 1 = ZERO adjust, the actual pressure signal is set to internal pressure 0. The valid range for adjustment is limited to -1.4V+1.4! Otherwise the sensor must be adjusted! 			
1	NOT USED (reserved)	-			
2	PING PONG TX BIT	PING PONG TX BIT transmitted from the master (PLC), is used to check the loop "master PLC - VAT station". See chapter: 3.11.9 Communication and timing control between Master (PLC) and Station (Valve)			
3	NOT USED (reserved)	-			
4	ACCESS MODE LOCKED	Start mode local locked remote Example: 1. from local to locked 1st step : set bit (0→1) 2. from local to remote 1st step : set bit (0→1) 2nd step: reset bit (1→0) 3. from remote to locked 1st step : set bit (0→1) 4. from locked to remote 1st step : reset bit (1→0)	Access me Set bit: Reset bit: Set bit:	ode locked bit 0→1 1→0 0→1	locked remote locked
5-15	NOT USED (reserved)	-			

INPUT Buffer (Master PLC) 4.9.2

4.9.2.1 Overview

Data	Indov	But	ffer				
model	Index	Contents (MSB)	Contents (LSB)				
	0	Pressure					
	1						
	2	Pressure Sensor 1					
	3	Flessure	Selisor I				
	4	Pressure Sensor 2 (optional, or	oly in case of 2 sensor version)				
	5	r ressure Sensor 2 (optional, or	ily iii case oi 2 serisor versiori)				
	6	Posi	ition				
	7	F 051	inon				
	8	Not used -	_ reserved				
	9	Not asea -	- reserved				
	10	Not used – reserved	Control mode				
	11	Fatal	error				
16-Bit (Word)	12						
	13	Not used -	- reserved				
	14	Not used	- Not used = reserved				
	15						
	16	Genera	l status				
	17	General	warnings				
	18	Extended	warnings				
	19	Not used – reserved	Not used – reserved				
	20	Not used -	t used – reserved				
	21	Not used					
	22	Not used – reserved	Not used – reserved				
	23	Not used -	- reserved				
	24	Not used – reserved					

4.9.2.2 Details

Signal Type	Name	Start Word	Byte Length	Data Type	Valid Range	Description
Signal	PRESSURE	0	4	signed integer (default) or floating point	-270000 1'230'000 (default) (-2.7V12.3V sensor signal), adjustable ¹⁾	In case of default valid range: Physical full scale value of the sensor (10 Volt) equals to 1'000'000. (In case of 2 sensor operation the full scale of high range sensor equals to 1'000'000.)
Signal	PRESSURE SENSOR 1	2	4	signed integer (default) or floating point	-270000 1'230'000 (default) (-2.7V12.3V sensor signal), adjustable ¹⁾	In case of default valid range: Physical full scale value of the sensor (10 Volt) equals to 1'000'000.
Signal	PRESSURE SENSOR 2	4	4	signed integer (default) or floating point	-270000 1'230'000 (default) (-2.7V12.3V sensor signal), adjustable ¹⁾	Optional, only in case of 2 sensor version. In case of default valid range: Physical full scale value of the sensor (10 Volt) equals to 1'000'000.
Signal	POSITION	6	4	signed integer (default) or floating point	0100'000 (default), adjustable ¹⁾	min signal value = "valve is closed" max signal value = "valve is opened" The position 9'999'999 (or 9'999'999.0 for floating point) show an unknown valve position – e.g. during synchronization at startup
Signal	CONTROL MODE	10	1	unsigned integer	014	 0 = init 1 = synch 2 = position 3 = close 4 = open 5 = pressure 6 = hold 7 = learn 8 = interlock open 9 = interlock close 10 = maintenance open 11 = maintenance close 12 = power failure 13 = safety 14 = fatal error
Signal	FATAL ERROR	11	2	unsigned integer	20,21,22,25,40	 20 = no stop detected during synch mode 21 = valve blocked during synch mode 22 = valve blocked 25 = step loss during synch mode 40 = motor driver fault
Bitmap	GENERAL STATUS	16	2	boolean array		See bitmap table below
Bitmap	GENERAL WARNING	17	2	boolean array		See bitmap table below

Signal Type	Name	Start Word	Byte Length	Data Type	Valid Range	Description
Bitmap	EXTENDED WARNING	18	2	boolean array		See bitmap table below
-	NOT USED (reserved)	19-22	1	-	-	-
-	NOT USED (reserved)	23-24	1	-	-	-

¹⁾ To adjust range refer to chapter: «Range of pressure and position values»

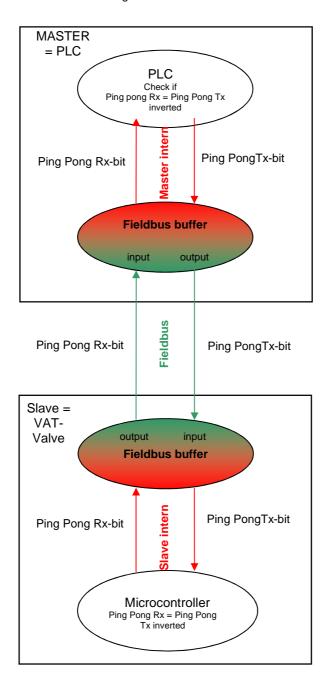
GENERAL STATUS bitmap table:

Bit		Description				
0	FIELDBUS DATA VALID	0 = Valve is not ready for communication (has not received the rising edge of "Initial Data Processing Complete") 1 = Valve is ready for communication (has received the rising edge of "Initial Data Processing Complete")				
1	ZERO EXECUTED	ZERO successful executed, active for 2 seconds				
2	PING PONG RX-BIT	PING PONG RX BIT, is inverted and transmitted back to the fieldbus master (PLC), See chapter: 4.9.3 Communication and timing between Master (PLC) and Slave (VAT-Valve)				
3	PRESSURE SIMULATION	0 = off 1 = on				
4	PRESSURE SETPOINT REACHED	0 = The actual pressure is not within 2% of the pressure setpoint 1 = The actual pressure is within 2% of the pressure setpoint				
5-6	NOT USED (reserved)	-				
7-8	ACCESS MODE	bit 8 bit 7 0 0 = LOCAL 0 1 = REMOTE 1 0 = LOCKED				
9	WARNINGS ACTIVE	0 = No WARNINGS 1 = At least one WARNING of the warning bitmaps is active (GENERAL WARNING bitmap and EXTENDED WARNING bitmap)				
10-15	NOT USED (reserved)	-				

GENERAL WARNING bitmap table:

	Bit	Description	
0	SERVICE REQUEST	Valve movement tight	
1	LEARN DATA SET	Learn data not present. Learn required for adaptive pressure control.	
2	NOT USED (reserved)	-	
3	POWER FAILURE BATTERY	Not ready, voltage too low	
4	SENSOR OVERLAPPING	Sensor deviation between sensor 1 and sensor 2 >= ±10%	
5	NOT USED (reserved)	-	
6	NOT USED (reserved)	-	
7-9	NOT USED (reserved)	-	
10	SENSOR MEASUREMENT UNIT FAULTY	AD-converter of Sensor input 1 and/or 2 (optional, only in case of 2 sensor version) on the master board is faulty.	
11-15	NOT USED (reserved)	-	

EXTENDED WARNING bitmap table:


	Bit	Description	
0	REMOTE CONTROL NOT POSSIBLE	Remote control not possible, access mode local is active, change to acces mode remote or access mode locked	
1	ACTUAL CONTROL MODE SETPOINT NOT ALLOWED	Not possible to switch the actual control mode to CONTROL MODE SETPOINT (for example control mode is interlock or fatal error)	
2	ZERO DISABLED	Using zero function not possible	
3	PFO DEACTIVATED	Power Failure Option is deactivated	
4	NOT USED (reserved)	-	
5	OUT OF RANGE: PRESSURE SETPOINT	Value of PRESSURE SETPOINT is out of range	
6	OUT OF RANGE: POSITION SETPOINT	Value of POSITION SETPOINT is out of range	
7-9	NOT USED (reserved)	-	
10	OUT OF RANGE: CONTROL MODE SETPOINT	Value of CONTROL MODE SETPOINT is out of range	
11	OUT OF RANGE: GENERAL CONTROL SETPOINT	Value of GENERAL CONTROL SETPOINT is out of range	
12	PROCESS DATA SETTING(S) NOT VALID	Value of PROCESS DATA SETTING(S) not valid (DATA TYPE or RANGE of pressure and position signals)	
13-15	NOT USED (reserved)	-	

4.9.3 Communication and timing between Master (PLC) and Slave (VAT-Valve)

INSTALLATION

See chapter: «OUTPUT Buffer» > «PING PONG TX-BIT» and «INPUT Buffer» > «PING PONG RX-BIT». For visual overview see the diagram below.

5 Operation

WARNING

Unqualified personnel

Inappropriate handling may cause serious injury or property damage. Only qualified personnel are allowed to carry out the described work.

A WARNING

Valve opening

Risk of serious injury.

Human body parts must be kept out of the valve opening and away from moving parts. Do not connect the controller to power before the valve is installed complete into the system.

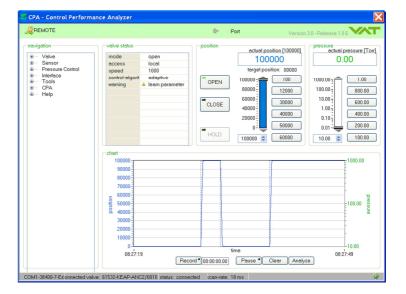
5.1 Normal operation

This valve is designed for downstream pressure control in vacuum chambers. It can be employed in a pressure control mode or a position control mode. In both cases local or remote operation is possible.

5.1.1 Local operation

Local operation means that the valve is operated via the service port using a computer or the Service Box 2. When using a computer, a service cable and a software from VAT is required.

You can use our Software (freeware) 'Control Performance Analyzer' which can be downloaded from: http://www.vatvalve.com/customer-service/informations-and-downloads/control-performance-analyzer.


These softwares are beneficial especially for setup, testing and maintenance.

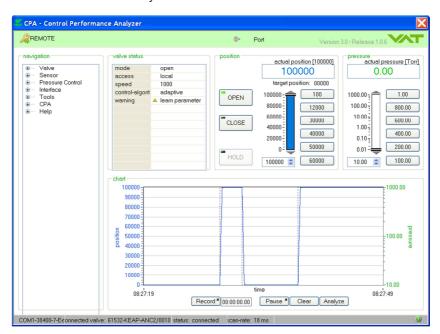
How to start:

Connect service cable between PC and valve controller, start software and push button 'LOCAL' to enable for operation. Then enter menu Sensor / Setup and do sensor configuration according to your application to make sure that you get the correct pressure displayed.

'Control Performance Analyzer' supports:

- Valve setup
- Sensor setup
- Pressure control
- Interface setup
- Manual control
- Sequence ontrolNumeric and
- graphical monitoring
- Data recording
- Data analysis
- Advanced diagnostic

When communication to service port is interrupted the valve will change to remote operation. So when service cable will be disconnected or software will be shut down, the valve returns automatically to remote operation. This may result in an immediate movement of the valve depending on remote control.


Refer to «Accessories» for ordering numbers of service cable and Service Box 2.

5.1.2 Remote operation

This product is equipped with a CC-Link interface to allow for remote operation. See section «CC-Link interface» for details. 'Control Performance Analyzer' software or 'Service Box 2' may be used for monitoring during remote control.

'Control Performance Analyzer' software

'Service Box 2'

In case 'Control Performance Analyzer' software is connected to valve make sure 'REMOTE' button is pushed to enable for remote operation. In case Service Box 2 is connected to valve make sure the LED on button 'LOCAL' is OFF for remote operation.

5.2 Close valve

Local operation: ('Control View', 'Control Performance Analyzer' or 'Service Box 2')	Remote operation: (Refer to chapter «OUTPUT Buffer» > «CONTROL MODE SETPOINT» for details)	
Push CLOSE button	 «OUTPUT Buffer» > «CONTROL MODE SETPOINT» Select [Close] (value = 3) 	

5.3 Open valve

Local operation: ('Control View', 'Control Performance Analyzer' or 'Service Box 2')	Remote operation: (Refer to chapter «OUTPUT Buffer» > «CONTROL MODE SETPOINT» for details)	
Push OPEN button	«OUTUT Buffer» > «CONTROL MODE SETPOINT» Select [Open] (value = 4)	

5.4 Position control

The valve position is directly controlled according to the position setpoint.

Local operation:	Remote operation:	
('Control View', 'Control Performance	(Refer to chapter «OUTPUT Buffer» > «POSITION	
Analyzer' or 'Service Box 2')	SETPOINT» for details)	
Select or enter position setpoint	 In «OUTPUT Buffer» > « POSITION SETPOINT» Select a valid value In «OUTPUT Buffer» > «CONTROL MODE SETPOINT» Select [Position] (value = 2) 	

5.5 Pressure control

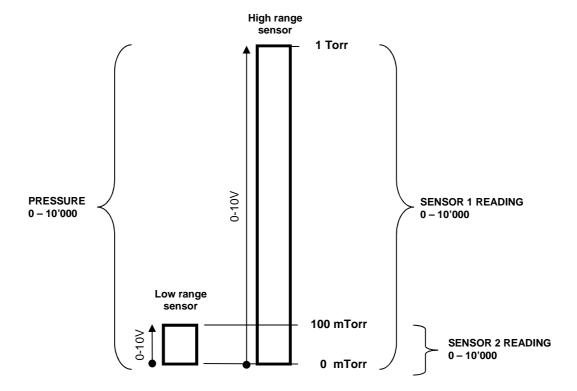
To prepare valve for PRESSURE CONTROL perform complete «Setup procedure». The valve has parameters that may be modified to tune pressure control performance. Refer to «Tuning of control performance».

The included PID controller controls the chamber pressure according to the pressure setpoint by means of the valve position. The PID controller works with an adaptive algorithm to achieve best results under altering conditions (gasflow, gas type).

Local operation:	Remote operation:	
('Control View' resp. 'Control Performance	(Refer to chapter «OUTPUT Buffer» > «PRESSURE	
Analyzer')	SETPOINT» for details)	
Select or enter pressure setpoint	 In «OUTPUT Buffer» > «PRESSURE SETPOINT» Select valid value In «OUTPUT Buffer» > « CONTROL MODE SETPOINT» Select [Pressure] (value = 5) 	

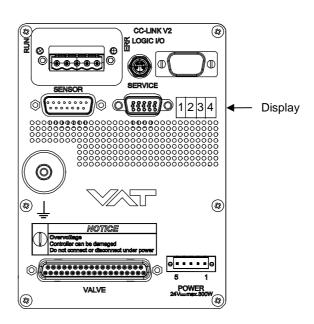
OPERATION Series 642

5.5.1 Pressure control operation with 2 sensors


[applicable with 642 . . - . . . F - . . . version only]

If 2 sensor operation is enabled, changeover between the sensors is done automatically during pressure control. For configuration refer to chapter «Setup procedure». We recommend a ratio of 10:1 between the pressure gauges. Max. ratio is 100:1. High range respectively low range pressure gauge may be either connected to sensor 1 or sensor 2 input. It's required to do correct sensor configuration. Between 90 and 100% of the low range sensor full scale, the low range sensor is phased out while high range sensor is phased in during pressure rise. During pressure decrease the high range sensor is phased out while low range sensor is phased in. This maintains a functional response behavior in case of small calibration errors between the two sensors. The PRESSURE output in this range is a blend between both sensors.

For monitoring purpose each sensor signal may be read out individually. Refer to «inquiry commands SENSOR 1 READING and SENSOR 2 READING»


Make sure that both sensors are calibrated. Do not close optional gauge isolation valves during the transition phase between the sensors.

5.6 Display information

There is a 4 digit display located on the panel. It displays configuration, status and position information. For details refer to following tables.

5.6.1 Power up

Description	Digit 1	Digit 2	Digit 3	Digit 4
Power On: All dots are illuminated	#	#	#	#
• 1 st information for about 3s: Firmware generation [e.g. 1G. .]	1	G		
• 2 st information for about 3s: Firmware version and firmware revision [e.g. 00 08]	0	0	0	8
• 3 nd information for about 3s: Valve type [e.g. 642]		6	4	2
4 nd information for about 3s: Controller configuration In case D999 is displayed, motor interlock is active. Refer to «Safety mode» for details.		A = No or unknown busmodule detected I = CC-Link interface	0 = basic 1 = with SPS ¹⁾ 2 = with PFO ²⁾ 3 = with SPS ¹⁾ and PFO ²⁾	1 = 1 sensor version 2 = 2 sensor version
SYNC indicates that powerup synchronization is running.	s	Υ	N	С

¹⁾ SPS = optional ±15 VDC Sensor Power Supply module, ²⁾ PFO = Power Failure Option

5.6.2 Operation

Description / Mode	Digit 1	Digit 2	Digit 3	Digit 4
PRESSURE CONTROL mode	Р			
POSITION CONTROL mode	V			
Valve closed	С			
Valve open	0			
Closed / open interlock (Valve closed / open by digital input)	1			
HOLD (position frozen) activated	н	0100 = valve position (%, 0 = closed / 100 = open)		/ 100 = open)
ZERO running	Z			
LEARN running	L			
Safety mode established. Refer to «Safety mode» for details.	D			
Power failure	F			
Service request 1) (valve requires cleaning)			S	R

 $^{^{1)}}$ If SR is blinking alternatively with the actual mode display (e.g. P.11 \Leftrightarrow ..SR) the valve requires cleaning.

5.6.3 Fatal error

Description	Digit 1	Digit 2	Digit 3	Digit 4
Fatal error occurred	E	Error code. Refe	er to «Trouble sho	oting» for details

5.6.4 CC-Link LEDs

#	Item	ŎŎŎŎŎ CC-LINK V2
1	Run LED	1 3
2	CC-Link Interface connector	RUN
3	Error LED	2 LOGI

RUN LED (1)

Series 642

State	Meaning
Off	No network participation, timeout status (no power)
Green	Participating, normal operation
Red	Major fault (FATAL error)

ERR LED (3)

State	Meaning
Off	No error detected (no power)
Red	Major fault (Exception or FATAL event)
Red, flickering	CRC error (temporary flickering)
Red, flashing	Station Number or Baud rate has changed since startup (flashing)

5.6.5 Safety mode

By means of an external switch (see connection diagrams «Electrical connection») the motor power supply can be interrupted. In this case the valve enters the 'safety mode'. This motor interlock prevents the valve from moving (e.g. maintenance work). Data reading from the control unit remains possible. When motor interlock is active during power up the valve directly enters the 'safety mode' and is not able to synchronize. Display shows 'D C' or 'D999'. In this case synchronization cycle will be done when motor interlock is deactivated. Then Display shows 'INIT' for a moment followed by 'SYNC'. When 'safety mode' is entered from operation (i.e. pressure control mode), the unit will automatically switch to position control mode and remain at current position. Once motor interlock is deactivated the unit remains in position control mode.

5.6.6 Service indication

This product is able to indicate that the valve unit needs to be cleaned, or an obstruction is present. A service request is indicated when the control unit detects that motor steps are apparently not effective. This may happen when the valve unit is heavily contaminated. These ,lost' steps are recognized and will be repeated to attempt target position in the short term. But in the medium term the valve unit requires cleaning or inspection. 'Service request' (SR) would be indicated on the display or could be read via remote operation. Refer to "Display information" for details.

5.7 Operation during power up

Valve position	Reaction of valve:		
before power up:	Valve power up configuration = closed (default)	Valve power up configuration = open	
Closed (isolated)	Valve remains closed. Display shows alternately 'C C' and 'INIT'. Synchronization will be done when first movement command is received.	Valve runs to max. throttle position to detect the limit stops to synchronize. Display shows configuration of product resp. 'SYNC' until synchronization is done. Valve position after power up is open.	
All other than closed (not isolated)	Valve runs to max. throttle position to detect limit stop for synchronization. Display shows configuration of product resp. 'SYNC' until synchronization is done.		
	Valve position after power up is closed	Valve position after power up is open	

Refer also to chapter: «Display information».

5.8 Behavior in case of power failure

Valve position	Reaction of valve:	
before	Without Power Failure Option (PFO)	With Power Failure Option (PFO)
power failure:	642 G	642 H
	642 A	642 C
	642 T	642 U
	642 V	642 W
Any	Valve remains at current position.	Valve will close or open depending on valve configuration 1).
		Default is not defined.
		Display indicates F .

1) Provide that battery pack of the VAT controller is charged. Charging time after power up is 2 minutes max..

All parameters are stored in a power fail save memory.

5.9 Operation under increased temperature

A CAUTION

Hot valve

Heated valve may result in minor or moderate injury.

Do not touch valve and heating device during operation. Once heating is switched off (valve and system) await until the valve is cooled down complete before doing any work.

This valve may be operated in the temperature range mentioned in chapter «Technical data».

6 Trouble shooting

Failure	Check	Action
No dots lighted on display	24 V power supply ok?	Connect valve to power supply according to «Electrical connection» and make sure that power supply is working.
Remote operation does not work	Local operation via service port active	- Switch to remote operation.
	- Safety mode active, check for D on display?	Provide power to motor to allow for operation.Refer to «Electrical connection» for details.
Display shows «E 20» (fatal error - limit stop of valve unit not detected)		- Replace actuator according to «Maintenance procedures».
Display shows «E 21» (fatal error - rotation angle of valve plate limited – power up)	- Valve plate mechanically obstructed?	- Resolve obstruction.
Display shows «E 22» (fatal error - rotation angle of valve plate limited - operation)	- Valve plate mechanically obstructed?	- Resolve obstruction.
Display shows «E 40» (fatal error - motor driver failure detected)		- Replace control unit according to «Maintenance procedures».
Display shows «D C» or «D999» Motor Interlock is open	- Motor power supplied?	Provide power to motor to allow for operation.Refer to «Electrical connection» for details.
Display shows «SR» (Service Request)	Valve unit heavy contaminated or gate seal heavily sticking?	Clean valve and/or replace gate seal according to «Maintenance procedures».
CLOSE VALVE does not work	Safety mode active, check for D on display? Maintenance mode active	 Provide power to motor to allow for operation. Refer to «Electrical connection» for details. Refer to "Display shows «M C»" in this table
OPEN VALVE does not work	Safety mode active, check for D on display? Maintenance mode active	 Provide power to motor to allow for operation. Refer to «Electrical connection» for details. Refer to "Display shows «M100»" in this table
Display shows «M C» Maintenance mode active		- Pin 14 of service connector is connected to ground. Plate will close. Further movement of plate is blocked. 1)
Display shows «M100» Maintenance mode active		 Pin 13 of service connector is connected to ground. Plate will open. Further movement of plate is blocked. 1)
POSITION CONTROL does not work	- Safety mode active, check for D on display?	Provide power to motor to allow for operation. Refer to «Electrical connection» for details.
	- POSITION CONTROL selected, check for V on display?	- Select POSITION CONTROL mode. Refer to «Position control» for details.
Pressure reading is wrong	- Sensor(s) connected?	- Refer to «Electrical connection».
pressure reading is negative	2 concor vorcion procent at	Chack valve version on page 4. Verify configuration
	- 2 sensor version present at valve controller?	 Check valve version on page 1. Verify configuration. Refer to «Setup procedure». Refer to «Pressure control operation with 2 sensors».
	- ZERO done?	Perform ZERO when base pressure is reached. Refer to «ZERO» for details.

	Does sensor power supply provide enough power for sensor(s)?	- Verify sensor supply voltage.
ZERO does not work	- Valve in open position, check for O on display?	OPEN VALVE and bring chamber to base pressure before performing ZERO.
	- ZERO disabled?	Enable ZERO. Refer to «Valve and sensor configuration» for details.
Pressure is not '0' after ZERO	- Sensor voltage shifting?	Wait until sensor does not shift any more before performing ZERO.
	- System pumped to base pressure?	OPEN VALVE and bring chamber to base pressure before performing ZERO.
	- Sensor offset voltage exceeds ±1.4V	- Replace pressure gauge.
PRESSURE CONTROL does not work	Safety mode active, check for D on display?	Provide power to motor to allow for operation.Refer to «Electrical connection» for details.
	- PRESSURE CONTROL selected, check for P on display?	- Select PRESSURE CONTROL mode. Refer to «Pressure control» for details.
	- LEARN done?	- Perform LEARN. Refer to «Setup procedure» for details.
PRESSURE CONTROL not optimal	- Setup done completely?	- Perform «Setup procedure» completely.
	- LEARN done?	- Perform LEARN. Refer to «LEARN» for details.
	- ZERO performed before LEARN?	Perform ZERO then repeat LEARN. Refer to «Setup procedure» for details.
	- LEARN interrupted?	- Repeat LEARN. Refer to «LEARN» for details.
	- Was gas flow stable during LEARN?	Repeat LEARN with stable gas flow. Refer to «LEARN» for details.
	- Tuning done?	Tune valve for application. Refer to «Tuning of control performance» for details.
	Is sensor range suited for application?	Use a sensor with suitable range (controlled pressure should be >3% and < 98% of sensor full scale).
	- Noise on sensor signal?	- Make sure a shielded sensor cable is used.

6.1 Additional CC-Link warning

Failure detection with CPA or CV software	Check	Action
Network failure: No CC-Link communication is active (warning 8)	- CC-Link cable ok? - Connection to master ok?	Check CC-Link cable.Check the CC-Link connection to master.
Control Performance Analyzer Version 2.2.0 mode: close access: remote info: none error: none warning: reserved - warning 8		

If you need any further information, please contact one of our service centers. You will find the addresses on our website: www.vatvalve.com.

7 Maintenance

WARNING

Unqualified personnel

Inappropriate handling may cause serious injury or property damage.

Only qualified personnel are allowed to carry out the described work.

WARNING

Valve opening

Risk of serious injury.

Human body parts must be kept out of the valve opening and away from moving parts. Disconnect power on controller before doing any work.

A CAUTION

Hot valve

Heated valve may result in minor or moderate injury.

Do not touch valve and heating device during operation. Once heating is switched off (valve and system) await until the valve is cooled down complete before doing any work.

NOTICE

Contamination

Gate and other parts of the valve must be protected from contamination.

Always wear clean room gloves when handling the valve.

7.1 Maintenance intervals

Under clean operating conditions, the valve does not require any maintenance during the specified cycle life. Contamination from the process may influence the function and requires more frequent maintenance.

Before carrying out any maintenance, please contact VAT. It has to be individually decided whether the maintenance can be performed by the customer or has to be carried out by VAT. Please write down the fabrication number of the valve before contact VAT. Refer to chapter «Identification of product» for fabrication number.

7.2 Maintenance procedures

One maintenance procedures are defined for this valve:

• Replacement of gate seal (gate and bonnet seal) and valve cleaning

MAINTENANCE

Required frequency of cleaning and replacement of seals is depending on process conditions.

VAT can give the following recommendations for preventive maintenance:

Replacement of	Recommendation
Gate seal (gate and bonnet seal)	Every 100'000 cycles

For spare parts of gate and bonnet seal refer to chapter: «Spare parts»

All pictures in maintenance procedure are sample pictures (DN63...400)

7.2.1 Replacement of gate seals and valve cleaning

7.2.1.1 Required tools

- Allen Wrench 4 mm (Allen torque wrench 4 mm)
- 2 x Open end wrench 13 mm
- Open end torque wrench 13 mm
- 2 x Open end wrench 10 mm
- Open end torque wrench 10 mm

- Isopropyl alcohol
- Vacuum grease (see chapter spare parts)
- O-ring removal tool (see chapter Accessories)
- Clean room wiper

	De	scription	Required tool
1. 2. 3. 4.	Vent both valve chambers Open the valve Turn off power to valve controller Disable power-fail option (wait 60 seconds)		CPA or Service Box 2
5.	Disconnect power cable at controller	⊕ s s s s θ 5 1 POWER 24V=max.300W	
6.	Unfasten and remove the bonnet screws		2 × Open end wrench 10 mm (DN 63 / 100) 2 × Open end wrench 13 mm (DN160400)
7. 8.	Remove valve bonnet and bonnet seal Deposit both parts on a clean place		

De	scription	Required tool
9. Pull out the gate until the crank bolt can be reached		
Loosen and remove the crank bolt screw		Allen wrench 4 mm
11. Remove the crank bolt from lever		
Pull out the gate assembly complete Caution! Take care that gate is not scratching at lever while pulling out		
13. Place the gate on a clean place14. Remove the gate o-ring		O-ring removal tool

De	Required tool	
15. Clean the o-ring groove and the gate assembly		Clean room wiper a little soaked with isopropyl alcohol
16. Install the new o-ring equally in o-ring groove (for new o-ring refer to chapter: «Spare parts»)		
17. Clean the valve body inside		Cleaning tool a little soaked with isopropyl alcohol (refer to chapter «Spare parts» for cleaning tool)
18. Clean the sealing surface of valve		Clean room wiper a little soaked with isopropyl alcohol
19. Push in the gate assembly untilsee step 20 Caution! Take care that gate is not scratching at lever and body while pushing in.		

Des	scription	Required tool
20. Insert the crank bolt at lever If necessary use a new crank bolt (for new crank bolt refer to chapter: «Spare parts»).		
21. Fasten the crank bolt screw adequately		Allen torque wrench 4 mm
22. Push in the gate assembly into valve body		
23. Clean the valve bonnet		Clean room wiper a little soaked with isopropyl alcohol
24. Clean or replace the bonnet seal		
25. Lubricate the seal side with 0.1 ml vacuum grease If necessary to use a new bonnet seal (for new bonnet seal refer to chapter: «Spare parts»). If new bonnet seal is used (also in case of VATSEAL), no cleaning and lubrication is needed.		Clean room wiper Vacuum grease

De	scription	Required tool
26. Reassemble the bonnet and bonnet seal with valve		
 27. Fasten the bonnet screws with: DN 63 / 100 with 10 Nm DN 160400 with 18 Nm 		DN 63 / 100 1 × Open end torque wrench 13 mm 1 × Open end wrench 13 mm DN 160400 1 × Open end torque wrench 13 mm 1 × Open end wrench 13 mm

7.2.2 Replacement of Option board

NOTICE

Electrostatic discharge

Electronic components could be damage.

MAINTENANCE

All work on the control and actuating unit has to be done under ESD protected environment to prevent electronic components from damage.

NOTICE

Burned connector pins (spark)

Connector pins or electronic parts could damage, if plugged and unplugged under power.

Do not plug or unplug connectors under power.

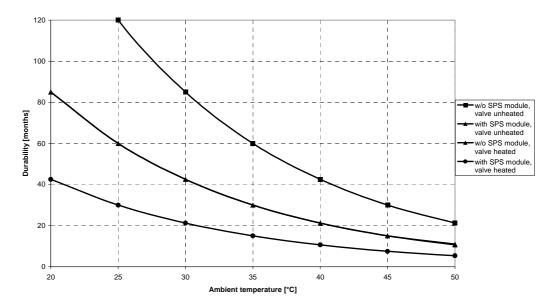
The option board may or may not be equipped in your valve depending on the order. Refer to page 1 of this manual to check valve version. This board includes the optional modules for the valve which are:

- ±15 VDC sensor power supply (SPS)
- Power failure option (PFO)

It is available in 3 versions. These are:

- · SPS module only
- · PFO module only
- SPS and PFO module

The modules may be retrofitted or replaced easily. The battery lifetime of the PFO module depends on the ambient temperature (see below). To assure PFO function the option board must be replaced after battery life has expired. For ordering number of the modules refer to chapter «Spare parts».

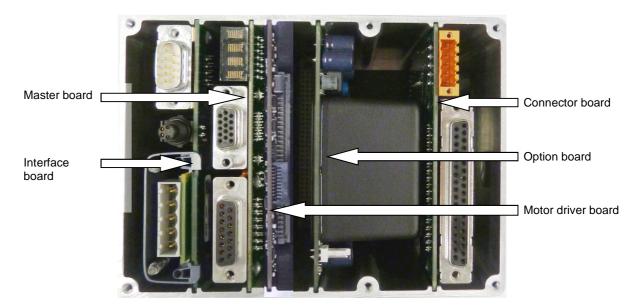


7.2.2.1 Durability of power fail battery

The curves in the graph show the estimated life of Ultra Cap PFO in the worst condition (max. sensor load = 1 A, valve heating temperature = 150 °C).

If the SPS is not fully loaded (< 1 A) or heating temperature of valve body is lower than 150 °C, the corresponding life time curve will be somewhere in between the upper and the lower curve.

Therefore please determine the equivalent maintenance period for replacing the Ultra Cap battery (Option board).



This graph shows estimated life of Ultra Cap PFO for reference and not as guaranteed value.

7.2.3 Retrofit / replacement procedure

Top view on control and actuating unit with panel removed:

All boards have a fixed position into control and actuating unit. It is not possible to fit a board in other position as shown in picture above!

7.2.3.1 Required tools

- Open end wrench 4.5 mm
- Open end wrench 10 mm
- Pozidriv screw driver size 1
- Screw driver size 2

	Desc	ription	Required tools
1.	Disconnect all electrical connections at controller.	Attention to ESD protection!	Pozidriv screw driver size1 Open end wrench 7 mm
2.	Remove the panel screws.	SENOR SERVICE STRONG	Pozidriv screw driver size1
3.	Remove this screws and the cover.	SENSOR SENSOR SENSOR NOTICE Convendage Generalist and power Designation under power PALVE VALVE Columns ROUTE RO	Screw driver size 2
4.	Remove the female screw locks from connectors.	SENSOR NOTICE NALE NALE NALE NALE NALE SENSOR NALE SENSOR NALE SENSOR NALE SENSOR SENSOR SENSOR SENSOR NALE SENSOR SENSOR SENSOR NALE SENSOR SENSOR SENSOR SENSOR NALE SENSOR SENS	Open end wrench 4.5 mm
5.	Loosen and remove the LOCIC connector screw	SERVICE SERVICE	Open end wrench 10mm

	Desc	ription	Required tools
6.	Lift controller panel carefully.	SENSOR SE	
7.	Remove or replace option board.		
8. 9.	Reassemble all parts in reverse order (see steps 63). Tighten panel screws with 1.1 Nm (see step 2).		
10.	Reconnect all electrical connections at controller.		

If you need any further information, please contact one of our service centers. You can find the addresses on our website: www.vatvalve.com.

8 Repairs

Repairs may only be carried out by the VAT service staff. In exceptional cases, the customer is allowed to carry out the repairs, but only with the prior consent of VAT.

Please contact one of our service centers. You will find the addresses on our website www.vatvalve.com.

9 Dismounting and Storage

WARNING

Unqualified personnel

Inappropriate handling may cause serious injury or property damage. Only qualified personnel are allowed to carry out the described work.

9.1 Dismounting

NOTICE

Contamination

Gate and other parts of the valve must be protected from contamination. Always wear clean room gloves when handling the valve.

NOTICE

Valve in open position

Valve body may become damaged if valve gate is in open position. Move valve gate to the closed position before dismounting the valve.

- 1. Close the valve
- For dismounting the valve please follow the instructions of chapter: «Installation», however in reverse order.

9.2 Storage

Wrong storage

Inappropriate temperatures and humidity may cause damage to the product.

Valve must be stored at:

- relative humidity between 10% and 70%
- temperature between +10 °C and +50 °C
- non-condensing environment

NOTICE

Inappropriate packaging

Product may get damaged if inappropriate packaging material is used.

Always use the original packaging material and handle product with care.

- 1. Clean / decontaminate valve.
- 2. Cover all valve openings with a protective foil.
- 3. Pack valve appropriately, by using the original packaging material.

10 Packaging and Transport

WARNING

Unqualified personnel

Inappropriate handling may cause serious injury or property damage.

Only qualified personnel are allowed to carry out the described work.

WARNING

Harmful substances

Risk of injury in case of contact with harmful substances.

Remove harmful substances (e. g. toxic, caustic or microbiological ones) from valve before you return the valve to VAT.

NOTICE

Inappropriate packaging

Product may get damaged if inappropriate packaging material is used.

Always use the original packaging material and handle product with care.

- When returning products to VAT, please fill out the VAT form «Declaration of Chemical Contamination of Vacuum Valves and Components» and send it to VAT in advance. The form can be downloaded from our website www.vatvalve.com (Section: Services – Aftersales).
- If products are radioactively contaminated, the VAT form «Contamination and Radiation Report» must be filled out. Please contact VAT in advance.
- If products are sent to VAT in contaminated condition, VAT will carry out the decontaminating procedure at the customer's expense.

10.1 Packaging

NOTICE

Valve in open position

Valve mechanism may get damaged if valve is in open position.

Make sure that the valve is closed.

- 1. Cover all valve openings with a protective foil.
- 2. Pack valve appropriately, by using the original packaging material.

VAT disclaims any liability for damages resulting from inappropriate packaging.

10.2 Transport

NOTICE

Inappropriate packaging

Product may get damaged if inappropriate packaging material is used.

Always use the original packaging material and handle product with care.

VAT disclaims any liability for damages resulting from inappropriate packaging.

11 Disposal

A WARNING

Unqualified personnel

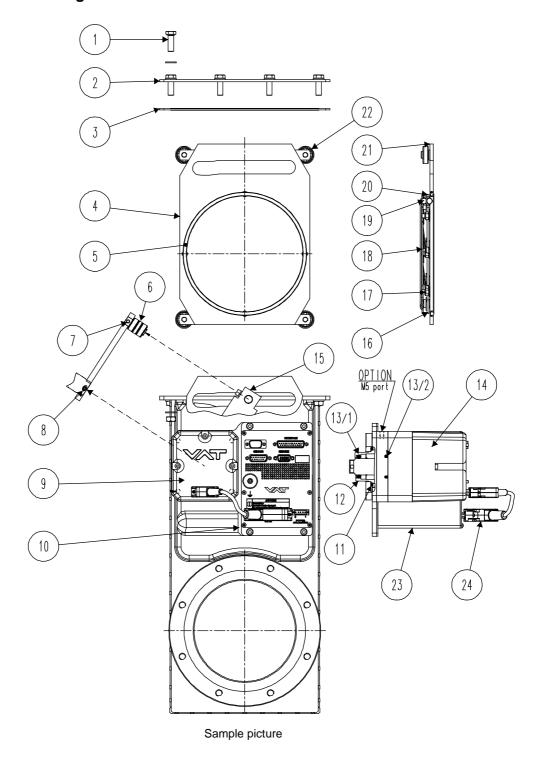
Inappropriate handling may cause serious injury or property damage. Only qualified personnel are allowed to carry out the described work.

12 Spare parts

NOTICE

Non-original spare parts

Non-original spare parts may cause damage to the product.


Use original spare parts from VAT only.

- Please specify the fabrication number of the product when you place an order for spare parts; see chapter: «Identification of product». This is to ensure that the appropriate spare parts are supplied.
- VAT makes a difference between spare parts that may be replaced by the customer and those that need to be replaced by the VAT service staff.
- The following table(s) contain spare parts that may be replaced by the customer. If you need any other spare parts, please contact one of our service centers. You will find the addresses on our website www.vatvalve.com.

12.1 Drawing

All "Item" refer to chapter «Drawing»

12.1.1 Valve unit with seals and grease

Item	Description	DN 63	DN 80	DN 100	DN 160	DN 200	DN 250	DN 320 DN 350	DN 400
3	Bonnet seal	77775-R1	77775-R1	77778-R1	77781-R1	77784-R1	N-5100-378	N-5100-382	N-5100-383
4	Gate assembly	591063	590996	590858	84275-R1	84608-R1	83481-R1	409173	215561
5	Gate O-ring	N-5102-340	220113	N-5102-351	N-5102-364	N-5100-372	N-5102-453	N-5102-457	N-5100-461
6	Crank bolt	79090-R1	79090-R1	79090-R1	79090-R1	79090-R1	85783-R1	85783-R1	87749-R1
7	Crank bolt mounting screw with spring washer	N-6005-458 N-6162-405	N-6005-458 N-6162-405	N-6005-458 N-6162-405	N-6005-458 N-6162-405	N-6005-458 N-6162-405	N-6005-502 N-6162-407	N-6005-502 N-6162-407	N-6005-502 N-6162-407
8	Feedtrough connection pin	N-6097-478	N-6097-478	N-6097-478	N-6097-480	N-6097-480	N-6097-509	N-6097-509	N-6097-509
14	Actuator: standard with pumping port	546656 489236	546656 489236	546656 489236	478357 487706	478357 487706	711045 539937	711045 539937	707681 587193
11	Static actuator seal	N-5100-222	N-5100-222	N-5100-222	N-5100-225	N-5100-225	N-5100-228	N-5100-228	N-5100-228
21	Locking balls	N-6121-052 (8 pcs)	N-6121-052 (8 pcs)	N-6121-052 (12 pcs)	N-6121-051 (18 pcs)	N-6121-051 (24 pcs)	N-6121-081 (18 pcs)	N-6121-081 (24 pcs)	N-6121-097 (32 pcs)
23	Controller				On request. T	o many to list.			
22	Ball bearing assembly	66856-R1 (1 pc)	66856-R1 (1 pc)	67064-R1 (2 pcs)	84326-R1 (2 pcs)	80642-R1 (2 pcs)	99205-R1 (4 pcs)	99205-R1 (4 pcs)	77286-01 (4 pcs)
	Seal kit vacuum	97442-R1	225315	97446-R1	85047-R1	95939-R1	98472-R1	98474-R1	98476-R1
	Feedtrough assembling tool			9100	1-R1			227400	
	VAT vacuum grease (40g)		N-6951-012						

12.1.2 Controller

Item	Description	Part number
	Control and actuating unit	Too many to list. Please contact VAT.
	Option board with SPS module (±15 VDC sensor power supply)	371399
	Option board with PFO module DN63250 (power failure option)	376419
	Option board with PFO module DN320400 (power failure option)	875669
	Option board with SPS und PFO module DN63250 (power failure option)	376098
	Option board with SPS und PFO module DN320400 (power failure option)	875668

12.1.3 Accessories

Description	Part number
24 VDC power supply unit (input: 100 – 240 VAC)	572699
'Control Performance Analyzer' package for Windows®	free download from: http://www.vatvalve.com/customer-service/informations- and-downloads/control-performance-analyzer
Service cable	230327
(PC to valve Service connector)	free wiring information available for download from www.vatvalve.com
Connector of: DB-15 male SENSOR plug	81177-R1
Service Box 2	601BS-29NN-000
Control panel (rack-mount version of Service Box 2)	602BS-29LE-000
O-ring removal tool	234859
VAT valve cleaning tool	305709

12.1.3.1 Centering ring with Viton o-ring

Valve size Product ordering number		DN 63 / 2½" 64236	DN 80 / 3" 64238	DN 100 / 4" 64240
Centering ring with Viton o-ring	Aluminum	32036-QAZV	32038-QAZV	32040-QAZV
(for ISO-F installation only)	Stainless steel	32036-QEZV	32038-QEZV	32040-QEZV

Valve size Product ordering number		DN 160 / 6" 64244	DN 200 / 8" 64246	DN 250 / 10" 64248
Centering ring with Viton o-ring	Aluminum	32044-QAZV	32046-QAZV	32048-QAZV
(for ISO-F installation only)	Stainless steel	32044-QEZV	32046-QEZV	32048-QEZV

Valve size Product ordering number		DN 320 / 12"	DN 350 / 14"	DN 400 / 16"
		64250	64251	64252
Centering ring with Viton o-ring (for ISO-F installation only)	num	32050-QAZV	none	32052-QAZV

13 Appendix

No information entered on time.

This page left blank intentionally.